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Introduction
A social network is a theoretical construct describing relations between entities
that are usually homogenous in nature. This definition formed over years mostly
from social sciences and psychology, where it was used to create an abstraction
of the real-world social interactions between people. In those fields, the social
networks were used to study - among others - social interactions between pairs
of people and their influence on the overall structure of the society.

Later on, the social network theory slowly permeated into other fields of study,
including discrete mathematics and computer science. The computing perfor-
mance of modern computers and the theoretical advances in the field of graph
theory allowed for the analysis of large datasets, which in turn allowed for the
study of social networks on a larger scale. This led to the creation of the field of
social network analysis.

While the theory behind social network analysis is already quite mature, its
practical applications are still being explored. The most prominent use cases
include the analysis of social media platforms, where the social network is formed
by the users of the platform and their interactions. Unfortunately, perhaps to
keep the competitive advantage, the social media platforms seldom share any
details about their social network analysis methods.

Without the access to the user data of commercial social media platforms, we
are left with the analysis of social networks that are publicly available. One such
example is the social network of academic researchers - individuals - and their
publications - which represent their interactions between each other. The realm
of academic researchers and collaboration on different publications opens a mul-
titude of opportunities for research - since both the “nodes” (the researchers) and
the “edges” (publications) of the social network have interesting data attributes
available for them.

For the researchers, this can be e.g. affiliation with parts of the university, their
academic title or their role within the university - e.g. are they lecturers, postdoc
researchers, or graduate students helping out on one or two publications etc.

For the publications, the data can include the authors, the publication’s affiliation
with faculties, year of publishing or publication keywords.

This thesis demonstrates practical use of social network theory in the context
of academic research and explores the usability of the social network metrics for
re-ranking of document retrieval results.

Lately, the term “social network” has been popularized as a synonym to the term
social media. These are online platforms that allow users to create a profile,
share content and interact with other users. In the rest of this thesis, the term
“social network” will be used to refer strictly to the theoretical concept or it’s
concrete representation in the form of a graph, while the term “social media” will
be preferred for the online platforms.
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Related work
This section talks about the related work in the field of social network analysis,
named entity recognition, graph visualization and academic search engines.

Note that more related work is mentioned in the respective chapters of this thesis,
especially in cases where we compare our proposed methods with the existing
solutions.

Social network analysis and ranking
The social network analysis of research groups has been a topic of interest for
various publications. Ordoobadi et al. [2019] and Cimenler et al. [2014] explore
the social network of researchers and their publications, and they try to infer the
social network structure from the data about the co-authorship of the publica-
tions. Later on they try to compare the social network metrics with the academic
performance - citation counts - of the researchers.

Haddad and Dridi [2013] explore the use of social relevance data for improving
the search result ranking in the context of information retrieval. By using data
from the Umaps Knowtex dataset (no longer available) they show that the social
relevance metrics - like share count, comment count or like count - can be used
to improve the ranking of the search results.

Jabeur et al. [2010] introduce a social model for academic literature access sys-
tems, where metrics on the social network of researchers, their publications and
the users of the system is used to improve the search results ranking. In this
paper, the authors explore weighted approach with multiple measures like be-
tweeness, closeness or PageRank.

Note that while this is quite similar to one of the topics of this thesis, the authors
of this paper only evaluate the social model on a small dataset of publications
in the ACM SIGIR conference. Because of this, the publications are tightly
connected in topic and the social network is quite dense, unlike in our case.

Beel et al. [2010] describe inner workings of academic search engines on the ex-
ample of Google Scholar and discuss search engine optimization in the context
of academic search engines. The reviewers of this paper mention the potentially
harmful effect of academic search engine optimization (ASEO) when the authors
artificially increase the relevance of their publications to the search queries by
deliberately overusing certain keywords.

Named entity recognition
The second chapter of this thesis is dedicated to the transformation of the rela-
tional data model into the graph data model and inferring the missing identity
data from the social network.

Identity inference is a problem that has been extensively explored in the context
of named entity recognition in the natural language processing. Named entity
recognition is a subfield of the natural language processing that deals with the
identification of named entities in the text. This can prove useful e.g. in the

4



semantization of plain text, where the named entities are enhanced with links to
the actual referenced entities in the knowledge base.

Mansouri et al. [2008] explore different approaches to the named entity recogni-
tion. Note that the common ground for all the mentioned approaches is extensive
use of NLP methods acquiring the context for each occurence of the named en-
tity in the text. While we briefly explore similar approach (normalizing the entity
names to the canonical form) in the second chapter of this thesis, the main focus
is on the possibility of inferring the missing identity data from the social network.

Graph visualization
The last chapter of this thesis explores the visualization of the academic social
network.

Many (e.g. Bennett et al. [2007] or Tominski et al. [2009]) studied the problem of
graph visualization and the usability of the different graph layouts, with respect
to the usability, aesthetics and the performance of the visualization.

Our use case adds the additional layer of complexity, due to the requirement of
deploying the visualization in the web application. While many have proposed
own libraries for the graph visualization (e.g. Gretarsson et al. [2010] or Franz
et al. [2016]), a recent research by Greif and Burel [2024] suggests that the de-
veloper public is largely skewed towards the use of the D3.js1 library for the any
visualization (including graph).

Few [2012] lists a large number of different techniques and guidelines regarding
data presentation in a visual form, including the graph visualizations. We will
refer to this book later on when discussing design decisions for the social network
visualization.

Academic search engines
Due to the goals of this thesis, we briefly explore the search engines used for
academic results retrieval and their features.

Charles Explorer is an academic open-source search engine developed for the
Charles University in Prague. The system indexes the publications, classes, re-
searchers and study programmes affiliated with the university and allows for
exploring the entities and relations between them.

As we mention in the next section, this thesis aims to improve the user experience
and data quality of the Charles Explorer application by data mining the social
network of researchers and their publications.

Google Scholar is a popular academic search engine maintained by Google LLC
IPA. According to the documentation2, the system crawls the Internet for well-
formed academic publications and indexes them automatically. Orduna-Malea
et al. [2015] estimated the size of the Google Scholar index to be around 99.8

1https://d3js.org/
2https://scholar.google.com/intl/en/scholar/inclusion.html
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million documents in 2014. Later estimates by Gusenbauer [2019] put the size of
the Google Scholar index at around 389 million documents in 2019.

While the automated approach to the indexing of the documents allows for the
inclusion of a large number of documents, Wijewickrema [2024] claims it might
lead to the inclusion of low-quality or predatory publications.

Because of the automatic indexing approach - and the possibility of irregular
schema of the indexed documents stemming from this - the Google Scholar index
also does not feature search on metadata like author / organization affiliations.
Many publications are also missing the links to the author profiles (authors are
often only mentioned by their name), which makes the exploration of the social
network of researchers difficult.

Scopus is a subscription-based academic search engine maintained by Elsevier.
Orduna-Malea et al. [2015] estimated the size of the Scopus index to be around
53.4 million documents in 2014.

According to the documentation3, contributions to the Scopus index are actively
curated by a team of field experts, which allows for the inclusion of high-quality
publications. Despite this effort, Macháček and Srholec [2022] and others claim
that the Scopus index still includes a significant number of predatory publications.

Because of the manual curation of the documents, the Scopus web application
features a faceted search on various publication metadata and relations between
the authors, their organizations and the publications themselves.

Web of Science is a subscription-based academic search engine maintained by
Clarivate Plc. Orduna-Malea et al. [2015] estimated the size of the Scopus index
to be around 56.9 million documents in 2014. Similarly to Scopus, indexing of
new publications is actively curated by a team of field experts.

Thanks to the manual curation of the documents, the Web of Science web appli-
cation also features a faceted search on publication metadata.

Tennant [2020] compares the coverage of the Web of Science and Scopus indexes
and points out that neither of the indexes might not fairly represent the global
scientific output. According to the claims, the indices are biased towards the pub-
lications from the English-speaking countries, written in English and concerning
several specific fields of study.

Goals of the thesis
The main goal of this thesis is to explore the practical applications of social
network analysis in the context of academic research. The overarching goal is
to improve the usability of the Charles Explorer application by using the social
network analysis.

The first goal is to create a social network of researchers and their publications
from the data available in the university’s information system. In this part, we
want to devise an effective transformation of the relational data model into a

3https://www.elsevier.com/products/scopus/content/content-policy-and-selection
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graph data model, which will allow us to use the graph algorithms for the social
network analysis.

The second goal is to explore the practical applications of the social network
analysis in the context of academic research. In this part, we evaluate the usability
of the social network metrics for the re-ranking of the document retrieval results.

The final goal is to improve the visualization of the academic social network in the
Charles Explorer application. While the current implementation is sufficient for
the basic exploration of the social network, it lacks the advanced features that
would allow for the more detailed analysis of the social network. The current
state of the visualization also suffers from performance and UX issues, which we
want to address in this thesis.

Experimental setup
In various parts of this thesis, we are running different benchmarks and experi-
ments. While most of those do not measure the computational performance of
the algorithms, we still want to provide the reader with the information about
the hardware and software used in the experiments for full reproducibility.

If not stated otherwise, the experiments were run on a machine with the following
specifications:

• APU: AMD Ryzen 7 PRO 2700U

• RAM: 24 GB

• OS: Linux Mint 21 (5.15.0-112-generic)

Additionally, the following software versions were used in the experiments:

• Python 3.10.12

• SQLite 3.45.1

• Memgraph v2.18.0

Where important (due to breaking changes across versions or the use of specific
features), the versions of the libraries used in the experiments are listed in the
README files of the respective repositories.

Blog links
As the experiments evaluated in this thesis are quite extensive, the thesis itself
contains only the most vital details about the experimental setup, outcomes and
the conclusions for brevity.

For the full details about the experiments, the reader is encouraged to visit the
blog posts that accompany this thesis. These blog posts contain the full imple-
mentation details, the code snippets, the intermediate results of the experiments
or reasoning behind some of the less important design decisions that were made
during the implementation.
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In parts with relevant blog posts available, the links to the blog posts are provided
with the following notation:[blog].

Note that the links to the blog posts are only available in the digital version of
the thesis and the URLs are not visible in the printed version. In case of reading
the printed version of the thesis, the reader is encouraged to visit the blog at
https://jindrich.bar/edu/thesis-blog/.
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1. Definitions and notation
The initial chapter lays out the definitions of the most essential social network-
related terms and concepts. The chapter also introduces the notation used
throughout the thesis.

1.1 Discrete graphs
In discrete mathematics, graph is a mathematical structure that consists of a set
of nodes (often denoted as V for vertices) and a set of edges (often denoted as E)
that connect pairs of the nodes.

This section introduces some of the thesis’s less common graph-related terms and
concepts.

Definition 1.1.1 (Adjacency matrix). The adjacency matrix of a graph G =
(V, E) is a square matrix A of size |V | × |V | where Auv = 1 if there is an edge
between nodes u and v, and Auv = 0 otherwise.

Different matrix operations can be used to calculate various properties of the
graph. For example, the degree of a node can be calculated as the sum of the
elements in the row of the adjacency matrix corresponding to the node.

Definition 1.1.2 (Distance matrix). The distance matrix of a graph G = (V, E)
is a square matrix D of size |V |× |V | where Duv is the length of the shortest path
between nodes u and v.

The distance matrix can be calculated using Floyd-Warshall algorithm or re-
peated Dijkstra’s algorithm.

Definition 1.1.3 (Node neighborhood). The neighborhood of a node v in a graph
G is the set of all nodes that are connected to v by an edge.

N(v) = {u ∈ V | there exists an edge between v and u}

Definition 1.1.4 (k-hop neighborhood). The k-hop neighborhood of a node v in
a graph G is the set of all nodes that are reachable from v by traversing at most
k edges.

Nk(v) = {u ∈ V | there exists a path of length at most k from v to u}

This can be useful to capture the local structure of a graph - e.g., Nikolentzos
et al. [2019] use the concept of k-hop neighborhoods to enhance graph embeddings
in graph neural network (GNN).

Definition 1.1.5 (Subgraph). A subgraph G′ = (V ′, E ′) of a graph G = (V, E)
is a graph where V ′ ⊆ V and E ′ ⊆ E.

Definition 1.1.6 (Induced subgraph). An induced subgraph G′ = (V ′, E ′) of a
graph G = (V, E) is a subgraph where V ′ ⊆ V and E ′ = {(u, v) ∈ E | u, v ∈ V ′}.
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In simpler terms, an induced subgraph is a subgraph that contains all the edges
between the nodes in the subgraph.

Definition 1.1.7 (Bipartite graph). A bipartite graph is a graph where the nodes
can be divided into two disjoint sets V1 and V2 such that all edges connect nodes
from V1 to nodes from V2.

Formally, a graph G = (V, E) is bipartite if there exists a partition of V into two
sets V1 and V2 such that

E ⊆ {(u, v) | u ∈ V1, v ∈ V2}

Definition 1.1.8 (Monopartite projection). The monopartite projection of a bi-
partite graph G = (V1 ∪ V2, E) onto a set of nodes V1 is a graph G′ = (V1, E ′),
where the nodes are the nodes in V1, and the edges are between the nodes in V1
that share a common neighbor in V2.

Formally defined, the monopartite projection is a graph G′ = (V1, E ′) where

E ′ = {(u, v) | ∃w ∈ V2 such that (u, w) ∈ E and (v, w) ∈ E}

Projection algorithms can produce multiple edges between the nodes in the pro-
jection. The resolution of this problem largely depends on the specific use case
of the projection — e.g., G′ can be a multigraph, or the edges can be weighted
by the number of common neighbors from V2.

Definition 1.1.9 (Connected component). A connected component of a graph
G = (V, E) is a subgraph G′ = (V ′, E ′) where all nodes in V ′ are reachable from
each other by traversing the edges in E ′.

1.2 Social networks
While the social sciences have been studying social networks for decades, not all
of the terminology is relevant to this thesis. This section introduces the most es-
sential computation-related social network terms and concepts used in the thesis.

For this thesis, a social network is a graph where the nodes represent real-world
entities (people, their publications) and the edges represent relationships between
the entities (only authorship in this thesis).

Definition 1.2.1 (Ego network). The ego network of a node v in a social network
G is the induced subgraph of G that contains v and its (1-hop) neighborhood.

E(v) = (N(v), {(v, u) | u ∈ N(v)})

Definition 1.2.2 (Ego (vertex)). The ego of a node v in an ego network E(v) is
the node v itself.

Definition 1.2.3 (Alter (vertex)). An alter of a node v in an ego network E(v)
is any node u that is not the ego v.
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1.3 Classifier evaluation metrics
In the context of this thesis, the social network metrics are used to evaluate the
performance of the classifiers that are run on the social network data.

This section introduces the most common classifier evaluation metrics used in the
thesis.

Definition 1.3.1 (Precision). The precision of a classifier is the ratio of the true
positive predictions to the total number of positive predictions.

precision = TP
TP + FP

Definition 1.3.2 (Recall). The recall of a classifier is the ratio of the true positive
predictions to the total number of actual positive instances.

recall = TP
TP + FN

Definition 1.3.3 (F1 score). The F1 score of a classifier is the harmonic mean
of the precision and recall.

F1 = 2 · precision · recall
precision + recall

Definition 1.3.4 (Macro-averaged F1 score). For a multi-class classification task,
the macro-averaged F1 score is the average of the F1 scores for each class.

macro-F1 = 1
n

n∑︂
i=1

F1i

Definition 1.3.5 (Micro-averaged F1 score). For multi-class classification tasks,
the micro-averaged F1 score is the F1 score calculated from the total number of
true positives, false positives, and false negatives.

micro-F1 = 2 ·
∑︁n

i=1 TPi∑︁n
i=1 TPi +∑︁n

i=1 FPi +∑︁n
i=1 FNi

This metric is less susceptible to class imbalance than the macro-averaged F1
score. Each class contributes to the micro-averaged F1 score proportionally to
the number of instances in the class.
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2. Data models and
transformations
The data about the academic researchers and their publications at Charles Uni-
versity (CUNI) is internally stored in a relational database. The first chapter of
this thesis explores the transformation of the relational data model into a graph
data model, which will allow us to use the graph algorithms for social network
analysis.

We also address pitfalls and challenges of the transformation stemming from the
specific nature of the data and the technical limitations of the source systems.

2.1 Input data format
The Charles University information system comprises a set of separate systems
and applications.

The Studium information system1 contains the data about the researchers, teach-
ers, courses, and study programs available at the university.

The Věda information system2 aggregates the data about the creative activities
of the researchers, the research projects, and inter-university mobility programs.
For this thesis, we are primarily interested in the Osobní bibliografická databáze
(Personal Bibliographic Database) (OBD) (or Verso) module, containing data
about academic publications.

The Whois staff information system3 contains the data about the employees of the
university, their affiliations with the faculties and departments and their academic
titles.

While none of the systems offer public APIs, a data import pipeline has been
set up by Ústav výpočetní techniky (Computer Science Centre) (ÚVT) (the uni-
versity’s IT department) in advance for the Charles Explorer application. This
pipeline consists of a set of database views tracking the changes in the data and
a script4 that exports the data to an SQLite database.

2.2 Target data model
We aim to transform the relational data model into a graph data model, allowing
us to use the graph algorithms for the social network analysis.

While the available data would allow us to create a multi-relational graph model
with different types of nodes and edges (e.g., Person, Publication, Course, Study

1Available at https://is.cuni.cz/studium/.
2Available at https://is.cuni.cz/veda/, login only.
3Available at https://is.cuni.cz/webapps/whois2.
4https://gitlab.mff.cuni.cz/barj/charles-explorer/-/blob/master/scripts/export.sh
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program), we limit the scope of this thesis to the social network between the
academic researchers and their publications.

From the view of the input data, this is the most significant and most intercon-
nected part of the data, which will allow us to demonstrate the capabilities of the
graph algorithms. The connections in the resulting graph are also easily inter-
pretable (e.g. the coauthorship relations between the researchers, the authorship
relations between the researchers and the publications).

The graph nodes will represent the academic researchers and the publications.
In contrast, the edges will represent the coauthorship relations between the re-
searchers and the authorship relations between the researchers and the publica-
tions.

We can notice that the graph is a bipartite graph, as the nodes can be divided
into two disjoint sets - the set of the researchers and the set of the publications.

2.2.1 Exploring the schema
We provide an example of the schema of the relational database together with
example data to illustrate the structure of the input data. Since this thesis focuses
on the social network between academic researchers and their publications, we
limit this example only to the relevant parts of the schema.

The social network data is accessible in the following three database views:

PERSON (
PERSON_ID, - UKČO personal number
PERSON_NAME, - Full name of the person, incl. the academic titles
PERSON_WEBSITE, - Personal website of the person
PERSON_WHOIS_ID, - ID of the person in the Whois system
TYPE - Person type - teacher(U), external employee(E), or other(O)

)

The Person view contains the data about the academic researchers and teachers
at the university. While the TYPE column might suggest that the table includes
records about external people as well (e.g., guest co-authors of publications pub-
lished by the CUNI researchers), it only contains the data about the people affil-
iated with the university. The TYPE column is only used to distinguish between
the different employment types at the university.

PUBLICATION_KEYWORDS (
PUBLICATION_ID, - internal ID of the publication
PUB_YEAR, - year of the publication
TITLE, - title of the publication
ABSTRACT, - abstract of the publication
KEYWORDS, - keywords of the publication
LANGUAGUE(sic!), - ISO 639-2 language code of the TITLE,

ABSTRACT and KEYWORD columns
ORIGINAL - whether the LANGUAGUE column is the original

language of the publication
)
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This schema shows some more issues with the data - the PUBLICATION_KEYWORDS
is missing a single primary key attribute, as the PUBLICATION_ID is not unique
across the table. This is because the same publication can have multiple records
in the table, each representing a different language version of the title, abstract,
and keywords.

Moreover, the PUBLICATION_KEYWORDS view does not contain a universally ac-
cepted publication identifier (e.g., a DOI or an ISBN) that would allow us to link
the publication to the external sources of the publication data. This is because
of a technical limitation of the information systems, as the OBD module is not
fully interoperable with the Studium module we are consuming the data from.

PUBLICATION_AUTHOR_ALL (
PUBLICATION_ID, - internal ID of the publication
PERSON_ID, - UKČO personal number of the author, if available
PERSON_NAME, - Full name of the author, incl. the academic titles

)

The relational database view PUBLICATION_AUTHOR_ALL contains the links be-
tween the publications and the authors from the previous views.

With the most naive approach, the transformation of the relational data model
into a graph data model could be done by transforming the records of the PERSON
and (deduplicated) PUBLICATION_KEYWORDS views into the nodes of the graph,
and the records of the PUBLICATION_AUTHOR_ALL view into the edges of the graph.

2.2.2 Missing identities
In the comment for the PUBLICATION_AUTHOR_ALL.PERSON_ID column, we note
that the UKČO personal number is not always available. This is because of
external authors who are not affiliated with the university and do not have a
UKČO personal number. What is worse, such authors are only identified by their
names, which can be inconsistent across the publications. This is again caused
by the limited interoperability of the data source modules - however, note that
this problem is present in larger academic search engines (e.g., Google Scholar)
too.

Aside from the obvious implications of this issue - i.e., user confusion and potential
performance issues, this also poses a challenge for the social network analysis, as
the graph algorithms might not be able to correctly identify the external authors.

In the aforementioned PUBLICATION_AUTHOR_ALL view, counts of the relations
mentioning the authors with/without the UKČO personal number are as follows:

Type Count Distinct
PERSON_ID present 808467 39523
PERSON_ID missing 671332 ?

Figure 2.1: Counts of the relations in the PUBLICATION_AUTHOR_ALL view.

We see that the no-identifier authors take up to 45% of the total count of the
relations. This explains the importance of inferring missing identities.
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2.3 Identity inference - Naïve approach
The naïve solution to this problem is using the names for the identity inference in
case of missing identifiers. While this is a simple transformation, it has obvious
drawbacks.

Firstly, the names are not guaranteed to be unique across the dataset.

Secondly, the names are not guaranteed to be consistent across the dataset -
due to (e.g., marital) name changes, typos, or different conventions in the aca-
demic titles. See the example of a search for the name “Jaroslav Peška” in the
PUBLICATION_AUTHOR_ALL view:

COUNT(*) PERSON_NAME PERSON_ID
2 doc. PhDr. Jaroslav Peška Ph.D. 14124313. . . 5

5 doc. PhDr. Jaroslav Peška Ph.D. null
2 Doc. PhDr. Jaroslav Peška Ph.D. null
1 doc. PhDr. Jaroslav Peška PhD. null
4 Jaroslav Peška null

Figure 2.2: Search for the name “Jaroslav Peška” in the
PUBLICATION_AUTHOR_ALL view.

While there are five variants of the same name in the dataset, only one is correctly
linked to the UKČO personal number. This could have been caused by human
error in data input or by the limitations of the source systems. Either way, this
creates an unrecoverable loss of information in the dataset.

2.3.1 Algorithm
In the SQL database export, we can “merge” the records using the naïve approach
efficiently using a many-to-one (non-injective) mapping on the PERSON_NAME col-
umn.

Let us define a function f :

f : PERSON_NAME→ NORMALIZED_NAME

We require f to map all person names to a normalized form, which is defined as
follows:

• The academic titles are stripped from the name.

• The name is converted to lowercase.

• The name is stripped of any diacritics.

• The name is stripped of any non-alphabetic characters.

• The whitespace characters are normalized to a single space.

• The name is stripped of any leading or trailing whitespace.
5PERSON_ID redacted for privacy reasons, replaced by truncated PERSON_WHOIS_ID.
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We can see that in the case of Jaroslav Peška, the normalized version for all the
variants is the same (i.e., f(PERSON_NAME) = jaroslav peska).

If we decide to add the output of this normalization function as an attribute in
the PUBLICATION_AUTHOR_ALL view, We can proceed with merging the records
using SQL GROUP BY and the aggregation functions.

2.3.2 Implementation
For the implementation of the name normalization function, we use the SQLite
loadable extensions mechanism. The transformation itself is done in three steps:

1. Using the glib function g_utf8_normalize, the string representation of the
name is normalized to the canonical Unicode NFD form. This step ensures
that the byte representation of diacritized characters is now composed of
separate characters for the base character and the diacritics (e.g. ě(U+011B)
is decomposed to e(U+0065) and ˇ(U+02C7)).

2. We scan the normalized string and remove all the characters that are not in
the range of the Latin alphabet. We convert all the alphabetic characters
to lowercase and replace all the whitespace characters with a single space.

3. Using regular expressions, we remove the academic titles from the name.
We construct the expression by defining a list of the academic titles and
concatenating them using the alternative separator | (e.g., PhDr.|Ph.D.).
We then use this regex to find the start index of the actual person name in
the string and use the glib function g_strndup to extract the substring.

The full implementation of the normalization function is available in the GitHub
repository of this thesis.6.

SQLite Loadable Extensions

While it would be possible to implement the normalization function using
inbuilt scalar SQLite functions (namely lower, trim, and repeated use of
replace), the developer experience of such a solution is suboptimal, as it
requires a lot of nested function calls in the SELECT clause.

Because of the way the scalar functions are defined in SQLite - and their
implementationa, the repeated calls to replace also result in repeated string
allocations and deallocations - which can be a performance bottleneck.

Fortunately, SQLite allows users to define their own loadable extensionsb in
C. This allows us to define the normalization function in C and load it as a
scalar function in the SQLite database.

ahttps://sqlite.org/src/file?name=src/func.c
bhttps://www.sqlite.org/loadext.html

For reference purposes, we also implement the same normalization function using
Python. This implementation loads the data from the database, normalizes the

6https://github.com/barjin/master-thesis/tree/main/examples/sqlite-normalize-ext

16

https://sqlite.org/src/file?name=src/func.c
https://www.sqlite.org/loadext.html
https://github.com/barjin/master-thesis/tree/main/examples/sqlite-normalize-ext


names using a Python function, and writes the normalized names into a new
table. The implementation can also be found in the GitHub repository7.

2.3.3 Performance
As mentioned in the infobox above, the SQLite extension for normalizing the
names should improve performance over the composed scalar functions. To test
this hypothesis, we repeatedly construct a temporary table with the normalized
names using both scalar functions and the extension.

CREATE TABLE test AS
SELECT normalize_name(PERSON_NAME) -- or the scalar functions

AS NORMALIZED
FROM PUBLICATION_AUTHOR_ALL;

Figure 2.3: The SQL query for the performance test of different normal-
ization methods.

SQLite engine has a default limit on the maximum expression tree depth of 10008.
This limit is relatively low and can be easily reached using the composed scalar
functions.

Because of this limitation, we are not replacing all of the academic titles in the
composed scalar functions case of the experiment. Even with the reduced number
of operations, the composed scalar functions seem to be much slower than the
SQLite extension:

Figure 2.4: The performance comparison of the SQLite extension and the
composed scalar functions (mean over 10 runs).

7https://github.com/barjin/master-thesis/tree/main/examples/sqlite-normalize-python
8https://www.sqlite.org/limits.html#max_expr_depth
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The Python reference implementation is expectedly much slower than both the
SQLite extension and the composed scalar functions. This is likely caused by the
interface read-write overhead of the Python sqlite3 library - compared to the
native data access of the SQLite extension.

2.3.4 Results evaluation
Even though the missing identifiers of the external authors make actual evaluation
of this method impossible, we can assess the effectiveness of the naïve merging
approach on the set of the internal authors (i.e., authors with existing explicit
identifiers). By comparing the identities inferred by the proposed method with
the existing identifiers, we evaluate the method’s accuracy.

Note that this only works under the assumption that the names of the external
(no-identifier) authors follow a similar distribution as the names of the internal
authors. While this might not be completely true—as external authors might, for
example, be more likely to be foreign nationals, perhaps with different naming
conventions—we consider this assumption a reasonable simplification.

To define metrics for the evaluation, let us first reformulate the identity inference
on the labeled data as a classification problem:

For a normalized variant of a name n, the predictor f returns (inferred) identifier
i, such that:

f(n) = MIN({r.PERSON_ID | r.PERSON_NORM_NAME = n})

• The target classes for the classification are the internal author identifiers
(identities).

• For a given normalized name, the predictor returns the minimal author
identifier with the corresponding normalized name (using e.g. the lexico-
graphical order).

– While sampling the identifiers from a probability distribution based
on the number of publications of the given person would be more
accurate, this would require the knowledge of the publication counts
of the external authors - which is not available to us (each external
author is connected to only one publication).

We also assume that the number of different external authors of the
same name is small - and that the authors with the same name are
likely to be the same person.

Note that this proposed classifier simply groups all the records with the same
normalized name under one deterministically selected identifier.

As we now define the algorithm as a classification problem, we can use the stan-
dard classification metrics to evaluate the method’s performance. Since the task
is a multi-class classification, we calculate the macro and micro-F1 score.

For the dataset of 39523 known-distinct internal authors, the grouping by the
normalized names results in 35610 merged records. As predicted in the previous
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section, the method likely merges people with the same name together. The
evaluation metrics of the naïve merging method are as follows:

Method Value
Macro-averaged F1 score 0.874959
Micro-averaged F1 score 0.900994

Figure 2.5: The evaluation metrics of the naïve merging method9.

2.3.5 Issues with the naïve approach
While the name-based merging approach is simple, it poses several issues. Firstly,
name-based merging can cause over-merging in the case of authors with common
names.

Secondly, the proposed algorithm does not support the existing identifiers from
the dataset. By only inferring the identifier from the name, we willingly discard
the existing information about the person.

The latter problem could be partially solved by coalescing the inferred identifiers
with the existing ones. Using the SQL COALESCE function, we can create a new
column in the PUBLICATION_AUTHOR_ALL view that would contain the inferred
identifier only if the original one is missing.

However, such an approach would only fully work in the case of only internal - or
only external authors. In the case of the internal authors with few records with
missing identifiers (e.g., Jaroslav Peška), this would still result in the creation of
up to two nodes for the same person (i.e., 14124313... for the “internal” records
and jaroslav-peska for the “external” ones).

“On-demand” naïve identity inference

In an attempt to address the first mentioned issue - the over-merging of the
authors with common names - we slightly modify the algorithm.

Instead of merging the records directly in the database, we merge the records
on-demand in the application’s visualization layer. If we e.g., restrict the
direct views only to internal authors - and show the external authors only
as collaborators of those, we can reuse the naïve approach quite effectively.

By restricting the domain of the mergeable records to a smaller, tighter
subcommunity of the graph (i.e., collaborators of one internal author), we
reduce the number of possible false positives in the merging.

Obviously, this approach still carries the risk of false positives in the case of
different external authors with the same name in the same subcommunity.

Also, note that this approach only improves the user experience with the
application. Using this, every external author’s coauthorship is stored as a
separate node in the graph, which can negatively impact the performance
of the graph algorithms.

9The SQL implementation of both evaluation metrics is available in the GitHub repository.
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2.4 Identity inference - Hierarchical clustering
To solve the issues of the naïve approach, we can try to use the graph structure
of the data to infer the missing identities. In the following subsection, we propose
an algorithm using the hierarchical clustering methods to group the nodes from
similar parts of the graph together. At the end of the subsection, we evaluate the
performance of the proposed method on the labeled data.

In the realm of data mining and statistics, hierarchical clustering is an umbrella
term for a set of unsupervised learning algorithms for grouping given data points
into a hierarchy of clusters. Typically, these algorithms iteratively merge the
closest clusters together, until only one cluster remains.10 The distance metric
used for the clustering can be any metric that defines the similarity between the
data points.

2.4.1 Algorithm
In the case of our dataset, we can use the shortest path distance between the
nodes in the graph as the distance metric.

We define the merging process as follows:

1. Start with a graph with nodes only merged based on explicit identifiers.
PUBLICATION_AUTHOR_ALL records without an explicit identifier are repre-
sented as separate nodes.

2. Select an arbitrary unmerged node without an identifier.

(a) Using the naïve approach, we find all merge candidates for the selected
node. Note that we are using the normalized name equality as the
requirement for the merge.

(b) We calculate the distance matrix between all the merge candidates.

(c) Using a hierarchical clustering algorithm, we cluster the data points
based on the distance matrix. We use a static preselected threshold
condition to determine the cluster boundaries (or mergeability of the
node groups).

(d) We use the clustering results to merge all nodes belonging to the same
clusters.

3. Go to step 2 until all the non-identifier nodes are merged.

We can make a few observations in the internal loop of the second step. As
mentioned in 2.2, the graph containing the nodes with the explicit identifiers is
a bipartite graph. Because of this, any path between two person-type nodes is
even-lengthed. Therefore, the shortest path distance between two person-type
nodes is 2.

Additionally, the shortest path distance between two mergeable nodes is 4. This
is based on an observation that two-person nodes in the distance 2 are connected

10In the case of top-down clustering, the process is reversed.
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to the same publication node. In case there are two merge candidates (based
on the naïve mergeability requirement) connected to the same publication node,
these should not be considered mergeable, as the publication is expected to list
unique authors - i.e., the candidates are different people with the same name.

2.4.2 Implementation
The proposed algorithm is computationally expensive. The distance matrix calcu-
lation has a time complexity of O(n2) and the standard hierarchical agglomerative
clustering algorithm has a time complexity of O(n3).

Distance matrix calculation[blog]

Loading the social network into Memgraph11 , we quite easily implement the
calculation of the distance matrix between the merge candidates using the Cypher
graph query language.

MATCH path=(p1: Person)-[*BFS]-(p2: Person)
WHERE

p1.PERSON_ID IN $queryCandidates
AND p2.PERSON_ID IN $queryCandidates
AND p1.PERSON_ID < p2.PERSON_ID

RETURN
p1.PERSON_ID,
p2.PERSON_ID,
size(path) AS distance

Figure 2.6: The Cypher query for the distance matrix calculation.12

In this query, $queryCandidates is an array containing the node identifiers of
the merge candidates for a given normalized name group. Note that the query
results can also be paginated using the SKIP and LIMIT clauses.

Preliminary experiments show that the query execution time is around 5.37 ms
per pair of nodes. Calculating the matrix of, e.g., 490000 pairs (for an external
author consisting of 700 merge candidates) would take around 43 minutes. While
this is a one-time operation - and the distances cannot change, as the external
author nodes are always connected only to the one publication they are attributed
to - this still leaves space for optimization.

Optimization: Monopartite projection

The run time of the distance matrix calculation is artificially increased by
the bipartitedness of the graph. During the calculation of the shortest path
distance between two person nodes, the breadth-first search algorithm is
forced to explore the intermediate publication nodes - even though those
have no possibility of being the target node. This can inflate the size of the

11An open-source in-memory graph database. Available at https://memgraph.com/.
12Rather curiously, passing the IDs array as a parameter results in a highly inefficient execu-

tion plan in Memgraph, causing a full scan of the nodes followed by a filter on the PERSON_ID.
Inlining the parameter array into the query causes Memgraph to use faster indexed access.
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internal BFS queue and the number of the visited nodes.

To mitigate this issue, we can calculate the distance matrix in 2(b) on
the monopartite projection of the social network on the set of the person
nodes. By replacing the publication nodes with edges on the person nodes,
we reduce the lengths of the shortest paths in half.

While the monopartite projection of the social network can be calculated using
the Cypher query language in Memgraph, we transform the data straight in the
source SQL database. Using a self INNER JOIN on the PUBLICATION_AUTHOR_ALL
view over the PUBLICATION_ID column, we receive the monopartite projection of
the social network on the set of the person nodes. Projecting the data onto
the person identifiers leaves us with a table containing the pairs of the person
identifiers connected by an edge.

SELECT DISTINCT X.PERSON_ID, Y.PERSON_ID
FROM (

SELECT PERSON_ID, PUBLICATION_ID FROM PUBLICATION_AUTHOR_ALL
) AS X
INNER JOIN (

SELECT PERSON_ID, PUBLICATION_ID FROM PUBLICATION_AUTHOR_ALL
) AS Y

USING(PUBLICATION_ID)
WHERE X.PERSON_ID < Y.PERSON_ID;

Figure 2.7: The SQL query calculating the monopartite projection of the
social network.

Note that the PERSON_ID in the query above is either the internal person identifier
or a generated unique identifier for the external authors.

Unfortunately, even with the projected graph, the performance of the shortest
path distance calculation in Memgraph is still suboptimal. With the mean time
of 5.68 ms per pair of nodes, this approach does not provide any significant
performance improvement over the original one.

This might be caused by the specific structure of the academic social network,
where the person nodes are connected by a much smaller number of publication
nodes. This is especially true with the graph with external authors, where the
external author nodes are connected only to the one publication node.

Note that the BFS algorithm has the complexity of O(V + E), where V is the
number of nodes and E is the number of edges. While the monopartite projection
reduces the number of the nodes in the graph, it does not reduce the number of
the edges - as the publication nodes are replaced by the edges between all the
coauthoring person nodes.

In case of the process described with the Figure 2.6, each publication node is
replaces by k edges, where

k =
(︄

deg(v)
2

)︄
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for deg(v) being the degree of the publication node v.

Optimization: BFS “vectorization”

Memgraph resolves the Cypher query for calculating the distance matrix
with an execution plan that includes a shortest path operation for each
node pair.

While Memgraph uses a slightly optimized algorithma for calculating the
shortest path distance between the two nodes, the distance matrix calcula-
tion can still be optimized by using a vectorized approach.

During a regular BFS, the algorithm visits the growing k-hop neighborhoods
of the start node until it finds the target node. Since in our case, we are
calculating the entire distance matrix (for a set of nodes), we can optimize
the process by searching for all the target nodes in the same BFS run. This
allows us to acquire the shortest path distances between the start node and
all the target nodes in a single BFS run.

aExpanding the BFS fringe from both ends (see source on GitHub).

The algorithm itself is quite simple and differs from the regular BFS approach
only in a handful of details. The following pseudocode example describes the
vectorized BFS algorithm:

1: function VectorizedBFS(graph, start, targets)
2: visited, queue, distances← ∅
3: queue.push(start, 0)
4: while not queue.empty() and not targets.empty() do
5: (node, depth)← queue.pop()
6: if node in targets then
7: distances[node]← depth
8: targets.remove(node)
9: end if

10: for neighbor in graph[node] do
11: if neighbor not in visited then
12: queue.push((neighbor, depth + 1))
13: visited.add(neighbor)
14: end if
15: end for
16: end while
17: return distances
18: end function

Notice the underlined parts of the algorithm - these are the parts that differ from
the regular breadth-first search for a single target node. Unlike the single target
BFS, the vectorized version only terminates once all the target nodes are visited.

Note that - given we consider the targets list constant-sized - the algorithm has
the same asymptotic complexity as the regular BFS - i.e., O(V + E). This is
obvious if we compare this vectorized approach to the regular single-target BFS
for the furthest target node. Both algorithms visit the same number of nodes
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and edges, the only difference is in the output - the vectorized BFS outputs the
distances to all the target nodes.

At the time of writing this thesis (July 18, 2024), the vectorized BFS algorithm
is not implemented in Memgraph or any other major graph database (Neo4j,
OrientDB, ArangoDB). While with the vertex identifiers inlined in the query, the
Cypher query planner might be able to automatically recognize the need for the
vectorized BFS, the obscure nature of the use case is likely the reason for the lack
of the implementation.

Because of this, we implement our own distance matrix calculator based on the
vectorized BFS algorithm in C++13. This program takes the graph data - i.e.,
the output of Figure 2.7 - in CSV format and parses the data into an in-memory
graph representation. It then iterates over a list of the user-specified target nodes,
taking each node as the start node for the VectorizedBFS algorithm. The rest of
the list is used as the target nodes for the algorithm.

By iterating through the list of the target nodes, we calculate the distance matrix
in k BFS runs, where k is the number of the target nodes. This is a significant
improvement over the k2 BFS runs in the original Memgraph approach.

Figure 2.8: The performance comparison of different distance matrix
calculation methods (n = 10 runs for each method).

Benchmarks show that the vectorized BFS algorithm is with a mean time of
1.65 ms per pair of nodes significantly faster than the regular BFS algorithm.

Figure 2.8 compares the results to two more possible optimizations of the vector-
ized approach.

The Vectorized symmetric approach only calculates the upper triangle of the
distance matrix and mirrors the results to the lower triangle. This utilizes the

13Implementation at https://github.com/barjin/master-thesis/tree/main/examples/distance-matrix
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fact that the social network graph we are using is undirected - i.e., the shortest
path distance between the nodes u and v is the same as the distance between the
nodes v and u. This makes the distance matrix symmetric and allows us to save
half of the calculations by only calculating the upper triangle.

This approach brings next to no performance improvement over the regular vec-
torized BFS. The reason becomes apparent when we consider the fact that the
vectorized BFS’s complexity is O(V + E) - i.e. does not depend on the number
of the target nodes.

The approach labeled Vectorized w/ threads parallelizes the vectorized BFS
algorithm using multithreading. Since the BFS algorithm is inherently sequential,
parallelization is done on the outer loop iterating through the start nodes. The
parallelization itself is quite straightforward, as VectorizedBFS is a pure function
with no side effects.

This approach comes out as the most performant, with the mean time of 0.45 ms
per pair of nodes.

2.4.3 Clustering process
After calculating the distance matrix, we can proceed with the hierarchical clus-
tering algorithm. For the purpose of this thesis, we will be using specifically the
bottom-up agglomerative clustering algorithm.

Unlike the naïve approach, the hierarchical clustering algorithm is parametrizable.
Note that in the step 2(c) of the proposed algorithm, we are mentioning a static
preselected threshold condition for the cluster boundaries.

Any bottom-up hierarchical clustering algorithm starts with original data points
as separate clusters and iteratively merges the closest clusters together - until
there is only one cluster left. We need to break down the hierarchy of recursively
merging clusters into disjoint groups of nodes with the same inferred identifier.

Sokal and Rohlf [1962] define the cophenetic value (or cophenetic distance) of
two clusters as the distance at which the two clusters are merged. Considering
a maximum cophenetic value cmax, we can define a stopping criterion for the
hierarchical clustering algorithm.

If the two clusters we are about to merge are at a distance cmax or further apart,
we stop the merging process and return the currently existing clusters as the final
data point grouping.

As mentioned earlier, the closest distance between two mergeable candidates in
our graph is 4. This is because two-person nodes we can consider to be mergeable
have to be connected to two different publication nodes. These publication nodes
need to be connected by - at least - one other person node.

Since the best choice for the cutoff distance is unclear, we will later evaluate the
performance of the hierarchical clustering algorithm for different threshold values.
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2.4.4 Results evaluation[blog]

As with the naïve approach, we evaluate the performance of the hierarchical
clustering merge on the set of the internal authors, as we have the ground truth
for the identities of these authors.

However, since this method uses the graph data structure, we need to slightly
edit the graph on the labeled data, so it resembles the data with the missing
identifiers better.

Firstly, the external (no-identifier) authors are always associated with a single
publication only. Therefore, for evaluation, we split the internal authors into
multiple nodes - each representing a single “authorship” of a publication. We
then connect these nodes to the respective publication node.

Note that only splitting the internal authors into multiple nodes would result in
a severely disconnected graph - each publication would be a separate connected
component. This would effectively disable the hierarchical clustering algorithm
based on the path lengths between individual merge candidates.

Figure 2.9: The splitting of the internal authors into multiple nodes.
Encircled nodes represent the original author identities. Note that the
resulting graph is disconnected.

We can see that for a single set of merge candidates - i.e., nodes with the same
normalized name - most nodes would end up in separate connected components
after the splitting (with the exception of two different people with the same
normalized name collaborating on the same publication).

We solve this issue by reintroducing the original internal author nodes into the
graph. This operation requires attention, too, though. Consider a merge candi-
date set C consisting solely of the “authorship” nodes for a single internal author.
After returning the original author node to the graph, the distance matrix for C
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would degenerate to

DC = 4− 4In =

⎛⎜⎜⎜⎜⎝
0 4 4 . . .
4 0 4 . . .
4 4 0 . . .
... ... ... . . .

⎞⎟⎟⎟⎟⎠

This is because one of the shortest paths between the authorship nodes would
always lead through the original author node, which is connected to both ends’
publications.

During the distance matrix calculation in the vectorized BFS algorithm, we solve
this by introducing a forbidden set of nodes. This set contains the nodes that
are not allowed to be visited during the BFS run. For each BFS run, we add
the original author node to the forbidden set, effectively preventing the BFS
algorithm from visiting the node.

Figure 2.10: Graph after reintroducing the original author nodes (blue).
The graph is now connected. Note that to calculate the distance between
two split “authorship” nodes, we forbid the BFS algorithm from visiting
their original author node.

Evaluation metrics

The merging algorithm to multi-class classifier mapping introduced in the naïve
approach evaluation is still valid, with slight differences. For the purpose of the
evaluation, we again reformulate the identity inference as a classification problem:

For a node n without an identifier and a (generated) cluster Cn containing n (and
some other nodes with the same normalized name), the predictor f returns (an
inferred) identifier i, such that:

f(n, Cn) = min({r.PERSON_ID | r ∈ Cn})
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Just like in the naïve case, we simply group all the nodes in the cluster under
the minimal identifier - but now only in the context of the cluster. Note that in
the case of a degenerated clustering algorithm always returning a single cluster
containing all nodes with the same normalized name, the proposed algorithm
would yield the same results as the naïve approach.

As we proposed in the Subsection 2.4.3, we evaluate the performance of the
hierarchical clustering algorithm for different threshold values to determine the
optimal cutoff distance.

Figure 2.11: The F1 scores for the hierarchical clustering algorithm for
different threshold values.14

We notice that for the maximum cophenetic distance cmax = 2, the algorithm
performance is very poor. This is because in such case, the algorithm cannot
merge any two merge candidates - as the closest distance between them is 4. In
such case the algorithm only correctly classifies the first node in the cluster -
while the rest of the nodes are (incorrectly) classified as separate entities.

We also see that the performance of the hierarchical clustering algorithm is dom-
inated by the naïve approach, regardless of the parameters. Unsurprisingly, both
methods perform more similarly with the increasing cutoff cophenetic distance.
This is because the naïve approach is essentially a special case of the hierarchical
clustering algorithm with a fixed (infinite) cutoff distance - merging all the nodes
with the same normalized name in one cluster.

The superior performance of the naïve approach is likely caused by the nature of
the input data and the variance in the normalized names. While the possibility
of splitting the over-merged groups into multiple clusters with the hierarchical
clustering algorithm might seem advantageous, We see that this is not the case
in the context of academic social network data.

14Both methods have been reevaluated on a smaller representative subset of data (n = 500).
For this reason, the naïve approach performance slightly differs from the previous evaluation.
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Note that the macro F1 score for hierarchical merging continues to grow with
the increasing cutoff distance, meeting the performance of the naïve approach at
1000. This is because the distance matrix computation tool denotes “infinite”
distance (e.g., between two nodes in two disconnected components of the graph)
as 999.
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3. Social network boosted search
ranking
In the previous chapter, we explored the process of transforming the relational
academic data into a true graph representation, including using graph metrics for
missing data inference.

In this chapter, we focus on the search engine part of the Charles Explorer ap-
plication. Using the graph data representation from the previous chapter, we
explore the possible issues with the classic document-based search engine and
experiment with the social network data for the search results re-ranking.

3.1 Full-text search
Nowadays, full-text search is an essential part of any information retrieval system.
Many search engines - including Apache Solr in Charles Explorer - implement the
full text search by utilizing the TF-IDF algorithm or similar. This is a simple and
efficient way to rank the search results based on the relevance of the documents
to the search query.

The TF-IDF algorithm is based on the term frequency and inverse document
frequency of the terms in the documents - a document is, in general, unstructured
free text content. Some entities in our academic search engine map well to this
notion of a document - e.g., a publication or class both have inherent textual
content (titles, abstracts, or class syllabi). Unfortunately, this does not hold for
all the entities in the system.

As an example, a person entity usually does not have any explicit textual content
associated with it. When searching for a person interested in a particular topic,
the search engine has to rely on the textual content of the publications, classes,
or other entities associated with the person, i.e. traverse - at least implicitly -
the knowledge graph (or the social network of the person).

A simple solution to this problem would be to represent every person as a doc-
ument, concatenating all the textual content of the entities associated with the
person. This can be further refined by assigning different weights - e.g. to the dif-
ferent types of entities (a class might be more important than a publication),
or different concatenated parts of the documents (e.g. the publication title and
class name are more important than the abstracts and syllabi).

Regarding adding new entities related to a given person, the concatenation also
serves us well - we simply append the new entity’s content to the person’s docu-
ment and reindex it.

However, this approach also has several drawbacks. First of all, assuming we’re
building a general academic search engine allowing for search in publications,
classes and people, we would be indexing the same content multiple times. This
is not only inefficient in terms of storage, but also prone to update errors - there
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is multiple copies of the same content, which have to be updated separately. The
second issue arises from the concatenation - if any of the person’s associated
entities changes, the whole document has to be reindexed. However, this might
be less of a problem than the first issue, as it’s not too common for academic
records to get updated or removed - at least in comparison to the number of new
records being added.

3.1.1 TD-IDF ranking issues
Result ranking in information retrieval refers to the ordering of the search results
when presented to the end user. This is often based on the relevance of the
documents to the current search query. The relevance-based ranking is often
enough for the basic use case - the user is presented with the most relevant
documents first, and can further explore the less relevant ones if needed.

While it might seem a bit superficial, the ranking is, in fact, still part of the
information retrieval process. Glick et al. [2014] showed that the ranking of the
search results positively correlates with the click-through rate of the results -
likely because of the typical top-left to bottom-right reading pattern of the users.
This can be further affected by other, more technical factors - such as the need
for an additional user action like scrolling or pagination to see the results further
down the list.

Considering a simple tf-idf-based search engine, the ranking of the search results
is based on the relevance of the documents to the search query. This is directly
related to the term frequency of the query in the document - for a fixed query
and document collection, we can forget about the inverse document frequency,
as it’s constant over all the documents. Ranking the documents solely based on
the term frequency might however lead to unfavourable results - especially in the
case of a proxy-representation of a given entity.

Figure 3.1: Simple representation of the social network of Alice and Bob.

Let us explore the issues in an example where we represent people as documents,
concatenating the textual content of the entities associated with them. Consider
two academic researchers in our system - prof. Alice and Bc. Bob. Bob is a
student of Alice and has published several papers on Information retrieval with
her. Aside from those, Bob has not published any other papers. On the other
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hand, Alice has published a lot of papers on various topics - related to IR, but
also to other similar fields. See a simple representation of their social network
above.

Note that aside from the common publications, Bob has no other entities associ-
ated with him, while Alice has other publications with other co-authors.

Figure 3.2: Concatenating representations of Alice and Bob as docu-
ments.

We see that the document of Bob is shorter than the one of Alice, because he has
less associated entities. We also notice that the Alice’s document fully contains
the Bob’s document.

The colored terms represent the current search query - if Alice only published
papers on the topic of the query with Bob, the term frequency of the query in
Bob’s document would be strictly higher, because of the shorter document length.
In case Alice also publishes on the topic with other co-authors, it gets harder to
reason about which of the term frequencies is higher.

The relation between the tf-idf scores of the documents of Alice and Bob can be
expressed as follows:

tf(q, dBob)× idf(q, D) ?
> tf(q, dAlice)× idf(q, D) (3.1a)

tf(q, dBob) ?
> tf(q, dAlice) (3.1b)

Normalized term frequency tfq,d of a term q in a document d is defined as the
number of times the term q appears in the document d (denoted by fq,d), divided
by the total number of terms in the document d (the document’s length).

fq,dBob

len(dBob)
?
>

fq,dAlice

len(dAlice)

/︄
−1 (3.2a)

len(dBob)
fq,dBob

?
<

len(dAlice)
fq,dAlice

/︄
assuming that fq,dBob = fq,dAlice (3.2b)

len(dBob) < len(dAlice) (3.2c)
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Since we have assumed that Alice’s document is a superset of Bob’s document,
the result inequality holds - and therefore, the tf-idf score of Bob’s document is
higher than the one of Alice’s document.

Note that the assumption in the equation 3.2b is only true for the cases when
Alice does not publish any other papers on the topic of the query with other
co-authors.

Either way, this approach most likely will not provide the desired outcome - while
Bob has published papers only on the given topic - and therefore has higher tf-idf
relevance to the query, Alice is likely the more relevant person for the searching
user since she is more experienced in the topic.

3.2 Re-ranking
Knowing the theoretical issues of the current Charles Explorer search engine
implementation, we try to address them by proposing a system for re-ranking the
search results. In the following sections, we go over different existing re-ranking
strategies utilized in other systems and explore the possibilities of using social
network data for the re-ranking in Charles Explorer.

Even though we have only talked about person entities in the previous sections,
we will conduct all the experiments on the ranking of the search results for publi-
cation records. This is because the publications are uniquely identifiable (unlike
people - see 2.2.2 for more details) and they have implicit textual content associ-
ated with them - the title, abstract, and keywords.

Note that the issues from 3.1.1 still apply for the publications - Beel et al. [2010]
mention different approaches to ASEO. By overusing certain keywords in the
publication titles and abstracts, the authors can artificially increase the relevance
of their publications to the search queries. Reranking the publications by a less
volatile and less falsifiable metric - like the social network data - might help to
mitigate this issue.

3.2.1 Existing re-ranking strategies
In the current (2024) commercial search engines, there are often multiple re-
ranking strategies available to the users. Unfortunately, only a small portion
of the engines actually discloses the details of the re-ranking algorithms used -
perhaps to protect the intellectual property and the competitive advantage.

To have a look at the existing re-ranking strategies, we examine the related
academic literature on the topic.

Böhm et al. [2011] propose a reranking algorithm for the Wikipedia search engine,
ranking the search results based on a current Wikipedia page and its linkage
(paths in the web graph) to the search results. Bendersky and Kurland [2008]
propose a reranking algorithm for document search using metrics on a passage
graph - a graph representation of the documents and the passages within them
with the edges representing the similarity between the passages.
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Famously, Brin and Page [1998] proposed the PageRank algorithm for the Google
search engine. The PageRank algorithm itself does not rerank the search results
- it is used to produce scoring of the web pages based on the link structure of
the web. The ranking of the search results is then based on multiple factors,
including the PageRank score of the pages.

Note that reranking is not only applicable in the context of search engines -
recommender systems use similar strategies of reordering the presented items
based on the user’s preferences or other factors. Pei et al. [2019] propose a
personalized reranking algorithm for the recommendation systems, which takes
into account the user’s preferences and the item’s popularity. See that unlike in
the search engines, the reranking in the recommendation systems is based on the
user’s interactions with the system, rather on the “global” statistics of the items.

3.2.2 Algorithm
In the previous subsection, we have listed several existing reranking strategies.
The common base for all these systems is the two-stage search pipeline. In the
first stage, a traditional search engine (e.g. TF-IDF based) is used to retrieve the
initial set of results. Then, these results are re-ranked using a different algorithm.

While this might seem redundant, this approach allows the second algorithm to
focus only on the more relevant results, and be perhaps more computationally
expensive. Unfortunately, this also means that the reranking algorithm is not
able to affect the initial search results; it can only change the order of the results.
It also brings in the issue of pagination - if the user has to go through multiple
pages of the search results, the reranking might not be as effective, as it only
affects the current page of the results.

Based on this framework, we propose a reranking algorithm for the Charles Ex-
plorer search engine:

For a query q, a set of all publications D and a social network G of all the people
and publications in the system, we propose the following reranking algorithm:

1. Retrieve the initial list Rq of search results relevant to q, Rq ⊂ D using the
traditional search engine. Rq is an ordered list of publications, ranked by
the relevance to the query.

2. For every publication p ∈ Rq, get the auxiliary relevance score s(p) based
on the social network data.

3. Construct a new list Rankq with items from Rq and ranking based both on
the original relevance scores and the auxiliary relevance scores.

We notice that this algorithm definition is quite abstract - and aside from the
mention of the social network data, it does not differ from the definition of the
general two-stage reranking algorithm.

However, the third step of the algorithm is not trivial either. The balance of the
original relevance scores and the auxiliary relevance scores in the final ranking
is a task of multiobjective optimization and might be hard to solve in a general
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case. Later on, we try to experimentally evaluate the performance of different
ranking-combination strategies.

In the following sections, we explore different social network metrics that can be
used for auxiliary relevance score s(p) calculation.

3.2.3 Social network metrics for reranking
The academic social network graph is often large and sparse, as academic systems
often accumulate many records over their lifetime. This poses a challenge for the
social network metrics calculation - the computational complexity of any global
graph metric grows with the number of nodes in the graph.

This combined with the need for the real-time response of the search engine makes
the calculation of the global graph metrics infeasible. In the following sections,
we propose some of the measures defined on close neighborhoods of the nodes in
the graph, the performance of which we will later evaluate in the experiments.

Node degree

The degree of a node v in a graph G is the number of edges incident to v.
deg(v) = |N(v)|

In the case of the publication nodes, the node degree is the number of people that
have collaborated on the publication. The possible benefit of using this metric is
rather clear - we expect that there might be a correlation between the number of
collaborators on a publication and the global relevance of a publication.

Neighborhood-separating node cut size

Similarly to the node degree, we define the neighborhood-separating node cut
size measure. For a given node n and its neighbourhood N(n), we define the
neighborhood-separating node cut size as the number of nodes (outside of N(n))
that have to be removed to separate N(n) from the rest of the graph.

In the context of the academic social network, for a publication p, this counts the
number of other publications the authors of p have authored. Note that in case
the authors of p have collaborated on some other publications, those still only
contribute to the cut size once.

We can also calculate this measure as
cut(n) = |N2(n)| − |N1(n)|

where Nk(n) is the k-hop neighbourhood of the node n.

Ego betweenness centrality

Betweenness centrality of a node v in a graph G is the fraction of all shortest
paths that pass through v.

betw(v) =
∑︂

s ̸=v ̸=t

σst(v)
σst
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where σst is the number of shortest paths between nodes s and t, and σst(v) is
the number of those paths that pass through v.

While this is usually calculated in the context of the entire graph, it is an useful
measure for ego-networks too, as it can help us quantify the importance of a
node in its local neighbourhood. Everett and Borgatti [2005] have shown that for
real-life networks, the ego betweenness centrality often correlates with the actual
global betweenness of a node in the graph.

In our data, the collaboration graph is bipartite - the nodes are either publications
or people, and there are no edges between the nodes of the same type. This means
that the ego betweenness centrality of a publication is in fact proportional to the
number of people that have collaborated on the publication.

2-hop betweenness centrality

Similar to the ego betweenness centrality, we calculate the 2-hop betweenness
centrality as the betweenness centrality of a node in a subgraph induced by the
node and its 2-hop neighborhood.

In our case of the bipartite collaboration graph, the 2-hop betweenness centrality
of a publication is no longer proportional only to the number of people that have
collaborated on the publication, but also to the number of other publications that
the people have collaborated on.

Note that this concept can be further extended to the k-hop betweenness central-
ity, but the computational complexity of the centrality calculation grows exponen-
tially with the k. Materializing the induced subgraphs for the k-hop betweenness
centrality calculation also poses a challenge in regard to memory consumption.

In our experiments, we only use the 1− and 2 − hop neighborhoods for the be-
tweenness centrality calculation due to the fast growth of the computational com-
plexity with larger k.

Eigenvector centrality

The eigenvector centrality of a node vi in a graph G is the sum of the centrality
scores of the nodes that are connected to v.

eig(vi) = 1
λ

∑︂
vj∈N(v)

eig(vj)

where λ is a constant. Note that the definition can also be rewritten as

eig(vi) = 1
λ

∑︂
vj∈V

avi,vj
eig(vi)

with avu being the elements of the adjacency matrix of the graph G.

Denoting eig(v) as a vector of eigenvector centralities for all nodes in the graph,
the equation can be rewritten as
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λ eig(v) = A eig(v)

where A is the adjacency matrix of the graph G. This shows the reasoning behind
the name of the centrality measure - the centrality scores are the eigenvectors of
the adjacency matrix.

Note that we are mentioning this measure only because of the following mentioned
measure. We do not calculate the eigenvector centrality in our experiments, as
the computational complexity of the centrality calculation is far too high for the
large graphs.

Katz centrality

Katz centrality is a special case of the eigenvector centrality.

Katz [1953] defines the Katz centrality of a node vi in a graph G as

katz(vi) =
∞∑︂

k=1

n∑︂
j=1

αk(Ak)ij

where α ∈ (0, 1/λmax) is a constant, and λmax is the largest eigenvalue of the
adjacency matrix A.

The Katz centrality counts the number of paths between the central node and all
other nodes in the graph. For a path of length k is additionally discounted by
the attenuation factor αk.

The above formula uses the fact that the power of the adjacency matrix Ak counts
the number of paths of length k between nodes i and j.

As follows from the definitions, the betweenness centrality of a node v is
computationally expensive to calculate for large graphs, as it considers all
pairs of nodes in the graph.

While e.g. Brandes [2004] offers an algorithm that reduces the computa-
tional complexity of the betweenness centrality calculation, the calculation
still poses a significant performance bottleneck for large graphs.

On the other hand, the Katz centrality can be calculated more efficiently -
since the definition introduces the attenuation factor α, the importance of
the nodes that are further away from the central node is discounted and the
centrality measure can be approximated by truncating the sum at a certain
small value of k.

3.2.4 Combining the metrics
In the third step of our proposed reranking algorithm, we want to combine the
original relevance scores of the publications with the auxiliary relevance scores
based on the social network metrics.

In our experiments, we compare two different strategies for combining the scores:
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1. Linear combination - the final relevance score of a publication is a linear
combination of the original relevance score and the auxiliary relevance score.

This includes edge cases of 100% weight on the original relevance score or
the auxiliary relevance score.

final_score(p) = α · original_score(p) + (1− α) · auxiliary_score(p)

2. Neural networks - we train a neural network to predict the final relevance
score of a publication based on the original relevance score and the auxiliary
relevance score.

Note that this approach is more complex and computationally expensive
than the linear combination, but it might provide better results, as it allows
for the non-linear combination of the scores.

3.3 Benchmarking setup
To determine the performance of our proposed re-ranking solution, we establish
benchmarks to compare the results of the traditional tf-idf based search engine
with the social network enhanced search engine.

3.3.1 Sourcing the golden data
The common denominator for many of the ranking measures - like discounted
cumulative gain (DCG) or mean reciprocal rank (MRR) - is the user interaction.
The user is presented with the search results and picks the most relevant one or
scores the results based on the relevance to the query.

Unfortunately, this is not applicable to our case - while we are tracking the user
interactions in the Charles Explorer web appplication, the amount of collected
data is far too low to be statistically significant.

To establish a gold standard for the search results relevance, we do not have to
rely solely on human interactions.

Elsevier Scopus1 is a large academic database that provides a search engine for
academic publications. Aside from the web application, it also provides a REST
API for consuming the data programmatically.

We use the Scopus API to retrieve ranked lists of publications for different queries
and then use the ranking of the publications as the source of the “global relevance”
for the search query in the benchmark. Simply put, by comparing the (ranking of
the) search results in our search engine to the results of the Scopus search engine,
we determine the relevance of the search results.

We are expecting the search results of the Scopus search engine to be more precise
and relevant than the ones of the Charles Explorer search engine - Scopus is a

1https://www.elsevier.com/products/scopus
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commercial product with a large team of developers and researchers, while Charles
Explorer is a small academic project. The data available to Scopus also contain
details about the citations of the publications and author profiles, which can be
used to further improve the search results ranking.

To partially mitigate the possible bias of the Scopus search engine, we also evalu-
ate the search results of the graph-enhanced reranking against ranking based on
the citation count.

We can consider the citation count as a proxy for the global relevance of the
publication - the more citations a publication has, the more relevant it is to the
academic community.

3.3.2 Sampling the search query set[blog]

As the first step, we need to sample the search query set for the benchmark. Since
we want to rule out possible biases - or at least mitigate their impact - we need
a large and diverse enough set of queries to compare the search engines on.

Generating these manually would be time-consuming and error-prone. Therefore,
to solve this issue, we use a wordnet - a lexical language database of English.
We use it to generate a large set of diverse queries, perhaps less biased than a
manually generated set.

We start by selecting a set of seed words - in our experimental case, those were
the words “field of study” and “medicine”. Then, we traverse the wordnet to
recursively find the hyponyms of those seed words, up to a certain depth.

Running this process for the seed words “field of study” and “medicine” with a
depth of 4, we get a set of 915 search queries.

While this approach gives us a sizable set of queries, we have no guarantee of the
quality of the queries - they might be too general or too specific, or not relevant
to the academic domain at all. One of our goals was also to ensure the fairness
of the query set - this is not guaranteed by the wordnet traversal either, as the
queries might be too similar to each other (or target the similar topics in the
publications).

Ensuring the query set fairness

While fairness is a largely subjective measure, we let the available data guide
us in this case. For the academic publications, we have their titles, abstracts,
keywords, faculty affiliations, and authors available in our system.

Since titles, abstracts, and keywords are free text fields, we omit them from our
analysis - the preprocessing of the text data is a complex task on its own. Given
the nature of our experiment - i.e. measuring the impact of using the social
network data for the search results ranking - we have to leave the authorship
information out as well.

This process leaves us with the faculty affiliations.
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Charles University has 17 faculties, each with a different focus and research areas.
Each publication in our data is attributed to exactly one faculty. This allows us
to use the faculty affiliations as a proxy for the fairness of the search queries.

Kullback-Leibler divergence

As the fairness measure, we compare the distribution of the faculty affiliations
in the search query results to the distribution of the faculty affiliations of all the
publications in the system.

The standard way of comparing probability distributions is the Kullback-Leibler
divergence - a measure of how one probability distribution diverges from a second,
expected probability distribution.

For discrete probability distributions P and Q defined on the same sample space
Ω, the Kullback-Leibler divergence from Q to P is defined as

DKL(P ||Q) =
∑︂
ω∈Ω

P (ω) log P (ω)
Q(ω)

The KL-divergence is always non-negative, and is zero if and only if P and Q are
the same distribution.

With the measure of the fairness of the search query set established, we now
proceed to the benchmarking of the search results ranking in Charles Explorer.

By sampling up to 30 results for each search query from the Charles Explorer
search engine, we acquire the faculty distribution for the entire search query set
(N = 915). We then compare this distribution to the distribution of the faculty
affiliations of all the publications in the system.

Figure 3.3: Comparing the faculty distribution of the search query results
(orange, right) to the distribution of all the publications in the system
(blue, left).

The Kullback-Leibler divergence of the faculty distribution of the search query
results from the distribution of all the publications in the system is approxi-
mately 0.0471.
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Optimizing the KL-divergence

With the defined measure of the fairness of the search query set, we now try to
optimize it. In our case, optimizing the KL-divergence means finding a subset of
search queries which would minimize the divergence of the faculty distribution
of the search query results from the distribution of all the publications in the
system.

Unfortunately, this poses serious challenges. Finding a subset with an optimal
aggregate property is a well-known NP-hard problem - often referred to as the
0-1 knapsack problem or the subset sum problem. Even worse, we cannot simply
reuse some of the existing algorithms for these problems, as those rely on the
distributivity and associativity of the sum operation. This is, however, not the
case for the KL divergence.

Similarly to the sum of the item values (in the Knapsack problem), the KL
divergence is evaluated on the entire set, but unlike the sum, the items themselves
do not have any “value” - and their contribution to the KL divergence changes
depending on the other items in the set. This leaves us with a limited choice of
algorithms to solve the problem. Because of the complexity of the problem and
its smallish role in this work, we use a simple random search.

This approach works in two steps:

1. Repeatedly sample a random subset of size k of the search queries, keeping
track of the subset with the lowest KL divergence. After a fixed number of
iterations, take the subset with the lowest KL divergence.

2. From the k-sized subset, repeatedly remove the search query with the high-
est contribution to the divergence. Stop when the KL-divergence stops
decreasing, i.e. we cannot remove any more search queries to decrease the
divergence, or we’ve reached the minimum subset size l.

This is a simple and computationally cheap approach, but it might not always
find the optimal solution. Furthermore, since the KL-divergence is a non-convex
function, the second step of the algorithm might get stuck in a suboptimal solu-
tion. While this could be mitigated using a more complex optimization algorithm
(e.g., simulated annealing, etc.), experimental results show that the simple ran-
dom search is sufficient for our purposes.

Running the optimization algorithm with n = 10000 initial random samples of
size k = 300 on the search query set, we arrive at a set of 174 queries with the
search result KL-divergence of 0.00317. This is a significant improvement over
the original divergence of 0.0471, and we will consider this a fairer subset of the
search queries for the benchmarking.

3.3.3 Collecting the data[blog]

Since our proposed benchmark only evaluates the search results ranking, we col-
lect the search results for the benchmark queries in advance. Similarly, we also
collect the data from the Scopus API for the same queries, as the automated
relevance feedback.
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Figure 3.4: Comparing the faculty distribution of the search query results
(orange, right) to the distribution of all the publications in the system
(blue, left) after running the optimization algorithm.

While collecting the search results from the Charles Explorer search engine is
straightforward since the API is available to us, the Scopus Advanced search
feature requires us to use a special query language2 to submit the search queries.
This query language offers a set of Prolog-like functors, each related to a specific
field - or a set of fields - of the publication record. The attributes of these functors
are used in a substring search on the specified fields.

Apart from this, the query language also supports logical operators, such as AND,
OR, and AND NOT.

We will use two of the available functors: TITLE-ABS-KEY and AF-ID:

• TITLE-ABS-KEY searches for the specified substring in the title, abstract,
and keywords of the publication record. In this regard, it is similar to the
full-text search in Charles Explorer, which searches in the same fields.

• AF-ID filters the search results by the organization affiliation of the publica-
tion. This is useful for filtering the search results to only those publications
where at least one of the authors is affiliated with Charles University. Since
Elsevier Scopus contains many records not affiliated with Charles Univer-
sity (but Charles Explorer only contains such records), this will help us to
get a more comparable set of search results.

By calling the Scopus API, we get the search results in JSON format, which we
then process and store in our database for benchmarking.

We see that the ranking column - the position of a publication in the search
results - is only very weakly correlated with the other numeric attributes of the
search results. This suggests that the default Scopus ranking is mostly influenced
by full-text search relevance and does not take any further attributes into account.
The strongest correlated attribute is the pubYear - this suggests that the older
publications are ranked higher in the search results. However, the absolute value
of the correlation coefficient (0.109848) is still very low.

2https://schema.elsevier.com/dtds/document/bkapi/search/SCOPUSSearchTips.htm
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ranking totalAuthors scopusId pubYear citationCount referenceCount
ranking 1.000000 0.038005 0.081229 0.109848 0.062467 0.053487
totalAuthors 0.038005 1.000000 0.033948 0.040538 0.113336 0.094358
scopusId 0.081229 0.033948 1.000000 0.806411 0.015393 0.243830
pubYear 0.109848 0.040538 0.806411 1.000000 0.033019 0.283521
citationCount 0.062467 0.113336 0.015393 0.033019 1.000000 0.218415
referenceCount 0.053487 0.094358 0.243830 0.283521 0.218415 1.000000

Figure 3.5: Correlation matrix of the Elsevier Scopus search results numeric
attributes.

It also suggests that the Scopus result ranking might not be too dependent on the
social network measures and that we might not be able to improve the ranking
by using the social network data (as the “explicit” social network data like the
citation count or the reference count are already not correlated with the ranking).

3.3.4 Simulating relevance feedback[blog]

With the data collected, we now proceed with the actual analysis of the search
results ranking in Charles Explorer.

Considering the Scopus search results as the gold standard, we calculate the per-
query precision, recall, and F1 score for the search results of Charles Explorer.

Query Precision Recall F1 score
physics 0.043011 0.040000 0.041451
bolus 0.125000 0.121212 0.123077
draft 0.010870 0.010753 0.010811
. . . . . . . . . . . .

Figure 3.6: Per-query precision, recall and F1 score for the search results
of Charles Explorer.

After aggregation over all the queries, this gives us the following unfavorable
statistics:

Mean 0.208727
Standard deviation 0.211699
Minimum 0.010101
25% 0.074786
50% 0.137028
75% 0.265263
Maximum 1.000000

Figure 3.7: Aggregated statistics of the F1 score for the search results of
Charles Explorer.

We see that the current Charles Explorer search results differ quite a lot from
the Scopus search results. This can be caused by mutiple reasons - either the
publications are not present in the Scopus database, or the queries are not specific
enough and the search results are returning partially disjoint sets of publications.
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Note that this is an issue that goes beyond re-ranking the Charles Explorer search
results. We cannot quantify the benefit of reordering the search results if we
consider all the search results irrelevant. This hinders our ability to use the
Scopus search results ranking as the proxy for the relevance feedback.

Since this thesis is focused on the search result ranking algorithms, we will proceed
with the benchmarking as planned. However, to improve the relevance score
assignment, we add a similarity search step.

In the F1 score calculation, we are currently only matching the Charles Ex-
plorer search results with the Scopus search results by the publication title (case-
insensitive). This matching criterion is prone to even the slightest variations in
the publication titles, which can lead to false negatives.

Inferring the publication relevance with semantic search[blog]

In the proposed similarity search step, we use the similarity of LLM (Large Lan-
guage Model) embeddings to match the publication titles. This should help us to
relate the publications missing from the Scopus search results to the ones present
there and assign them a relevance score.

LLM embeddings

LLM embeddings are vector representations of a given text, generated by
a large language model. While those can be arbitrary vectors, embeddings
are usually optimized to capture the semantic meaning of the text.

This means that texts with similar meanings should have similar embed-
dings - i.e. the (cosine) similarity of the embedding vectors should be high.

We enhance the relevance calculation with the similarity search process as follows:

1. By means of an LLM embedding model, we precalculate the embeddings for
the publication titles of the Elsevier Scopus search results. We store these
embeddings in a vector database.

2. For each publication title in the Charles Explorer search results, we calculate
its embedding. In the database, we search for the nearest embedding among
Scopus search results embeddings. Furthermore, we require the retrieved
document to be a result of the same query (in Elsevier Scopus) as the
Charles Explorer search result.

3. We calculate the Charles Explorer document’s inferred relevance from the
most similar document’s attributes - e.g., its position in Scopus search.

For the document embedding, we use the all-MiniLM-L6-v23 sentence - trans-
former model. This is a general-purpose English embedding language model
designed for running on consumer-grade hardware. Due to its small size and
competitive performance, it’s often used for the real-time use-cases, like semantic
search or RAG (Retrieval-Augmented Generation).

3https://www.sbert.net/docs/sentence_transformer/pretrained_models.html
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For the similarity search on the embeddings, we use the ChromaDB database4.
ChromaDB is a vector database designed for the similarity search on the embed-
dings, with support for enhancing the search results with the additional metadata
attributes of the documents.

Figure 3.8: Histogram of inferred positions of the Charles Explorer search
results in the Scopus search results.

This process gives us the predicted rankings, which follow a rather skewed distri-
bution. However, this does not pose a serious problem to our benchmark.

Firstly, we are not trying to predict the exact ranking of the search results,
but rather to assign a relevance score to each search result. The peak of the
distribution is at the top of the rankings, which is in line with the well-known
tendency of human users to have a much clearer opinion about the few top results
than the long tail of the search results (as described by, e.g., Su et al. [2021]).

Secondly, the left-skewed distribution might be caused by the non-uniform lengths
of the search result lists. Since for some of the queries, Scopus returns only a few
relevant search results (100 is only the maximum limit), the resulting predicted
rankings will be skewed towards the top of the list for these queries.

3.4 Evaluation
Using the original ranking positions and the predicted ranking positions as the
source for the relevance feedback, we calculate the nDCG (Normalized Discounted
Cumulative Gain) score for the search result ranking.

DCG score for a single search result list is calculated as the sum of the relevance
scores of the search results, discounted by their position in the ranking.

4https://www.trychroma.com/
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DCGlist =
N∑︂

i=1

2reli − 1
log2(i + 1)

The IDCG score is the DCG score of the ideal ranking of the search results, i.e.
the items in the list are sorted in descending order by reli.

The normalized DCG score is then calculated as the ratio of the DCG score to
the IDCG score.

nDCGlist = DCGlist

IDCGlist

To transform the predicted Scopus rankings from 3.3.4 into relevance feedback,
we introduce a new function relq(d).

For a given query q, the document d is considered to have relevance of relq(d),
which is inversely proportional to its predicted ranking. This is necessary for the
nDCG score calculation, which requires more relevant documents to have higher
relevance scores.

The inverse proportionality is achieved by the following formula:

relq(d) = a

rankq(d) + 1

where a is a constant that scales the relevance scores and can help achieve better
stability of the nDCG score with respect to rounding errors.

For the purpose of the experiments in this thesis, we set a = 5. The +1 in the
denominator is necessary to avoid division by zero, as our rankings are 0− based.

While it would be possible to achieve the ranking→ relevance transformation via
e.g. subtracting the predicted ranking from the total number of search results,
our proposed method with relq(d) introduces a non-linear transformation of the
predicted rankings. This differentiates better between the search results that
are ranked higher in the Scopus search results. This is again in line with the
aforementioned tendency of human users to have clearer opinions about the top
search results.

3.4.1 Baseline benchmark
Calculating nDCG over search results for individual queries in Charles Explorer
with the predicted relevance scores from 3.3.4 gives us the following results:

The mean nDCG score of 0.761607 suggests that the search result ranking in
Charles Explorer already works well - and that the relevance feedback based on
the predicted Scopus rankings gives us a good approximation of the relevance of
the search results.
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dcg idcg ndcg
mean 14.919819 19.167405 0.761607
std 16.810894 17.665142 0.180979
min 0.094340 0.094340 0.405669
25% 5.250473 7.704989 0.627563
50% 9.527864 14.840570 0.736246
75% 18.064385 24.112511 0.934206
max 104.693354 104.693354 1.000000

Figure 3.9: Aggregated statistics of the nDCG score for the original search
results of Charles Explorer (query count = 149).

3.4.2 Using graph metrics for re-ranking
With the relevance feedback and baseline benchmark values established, we can
now proceed with the re-ranking of the search results in Charles Explorer using
the social network data. After retrieving the metrics listed in Subsection 3.2.3,
we train two models for aggregating the social network metrics and the original
relevance scores to predict the final relevance scores.

As mentioned in Subsection 3.2.4, we use two different approaches for the aggre-
gation.

Linear combination: The first proposed solution suggests a linear combination
of the original relevance scores and the auxiliary relevance scores. To find the
best coefficients of the linear combination, we use a simple least squares regression
model.

By training a regularized linear regression model on the training data (n = 9600)
(i.e. original relevance-based ranking and the social network metrics), we find
the coefficients that minimize the mean squared error (MSE) of the predicted
relevance scores.

Evaluation of this model on the test data (n = 2265) gives us a MSE of 2.1016.
While this is not interpretable as is - since we are learning an arbitrary relevance
score, not a ranking - we can use the predicted relevance scores to rerank the
search results and calculate the nDCG score.

Furthermore, the simplicity of the linear regression model allows us to inspect
the internal coefficients learned by the model and to interpret the importance of
the individual features for the final relevance score.

From the coefficients, we can see that the most important feature for the final
relevance score is the original relevance score - i.e. the ranking of the search
results in Charles Explorer. This seemingly confirms our hypothesis that the
Scopus search result ranking is mainly influenced by the relevance of the search
results themselves, rather than any other - more global - publication measures.

Neural networks: The second proposed solution suggests training a neural
network to predict the final relevance scores based on the original relevance scores
and the social network metrics. As mentioned before, this might help with finding
the non-linear relationships between the features and the final relevance scores.
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Feature Coefficient
charles_explorer_ranking -0.23068
centrality_1 0.08317
centrality_2 0.01018
degree -0.08756
katz_centrality -0.00491
node_cut -0.02733

Figure 3.10: Coefficients of the linear regression model for the linear com-
bination of the original relevance scores and the social network metrics.

On the other side, such a model is less interpretable than the linear regression
model.

Training a neural network (2 hidden layers, 100 neurons each) on the same train-
ing dataset (n = 9600) as the linear regression model gives us a MSE of 2.0498
on the test data (n = 2265). We see that in this regard, the neural network
model outperforms the linear regression model only marginally. This further sug-
gests that the relationships between the features and the final relevance scores
are rather simple and can be captured by a linear model.

Using both models to aggregate the new “predicted” relevance scores, we calcu-
late the nDCG score for the re-ranked search results. We compare the NDCG
scores of the re-ranked search results to the baseline benchmark to determine the
performance of the social network-enhanced search engine.

Baseline nDCG Linear model Neural network
count 149.000000 149.000000 149.000000
mean 0.761607 0.746176 0.770519
std 0.180979 0.172590 0.178775
min 0.405669 0.404108 0.425830
25% 0.627563 0.618646 0.615640
50% 0.736246 0.735163 0.759933
75% 0.934206 0.904977 0.955842
max 1.000000 1.000000 1.000000

Figure 3.11: Comparison of the nDCG scores of the baseline search results
and the search results re-ranked using the linear regression and neural
network models.

We see that the nDCG score for both the models utilizing the graph measures is
lower - or comparable - to the nDCG score of the original search results.

This shows that the graph measures we have collected do not provide much useful
information for the reranking of the search results.

Note that while the evaluation of the reranking performance is done on the entire
set (including the linear regression / neural network training set), the results
are still not any better than the original search results. This hints at the high
dimensionality of the problem and the lack of generalization of either of the
models.
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As mentioned before, the Scopus search result ranking is likely mainly influenced
by the relevance of the search results themselves, rather than any other - more
global - publication measures. In a way, the fact that the graph measures do
not help with the reranking does not come as a surprise. This might also be
partially caused by the title similarity search step, which helps with the missing
publications problem.

This shows that the Scopus search result ranking is likely not a good proxy for the
relevance feedback, if searching for a global relevance measure of the publications.

3.5 Predicting the citation count[blog]

As we have noticed before, the search results ranking we have acquired from
Scopus is mostly based on raw query relevance. Because of this, it might also
be riddled with the problems we have discussed in Subsection 3.1.1 - such as the
susceptibility to (potentially malicious) search engine optimization.

In search of a better ranking system for Charles Explorer, we try to predict the
citation count of the papers based on the local graph measures we have calculated
in the previous section. This decision comes from the idea that the citation count
is a good indicator of the importance of the paper that cannot be easily interfered
with by the authors.

Unlike the search result ranking optimization from the previous sections, the ci-
tation count inference is a popular research topic in the field of bibliometrics.
Notably, Abbasi et al. [2011] explores the influence of small-scale graph neighbor-
hoods of authors on their academic performance and the citation count of their
papers.

3.5.1 Sourcing the data
Unfortunately, in the data collected for the previous sections’ benchmarking, we
do not have the citation count of the publications. Reusing the Scopus API access
from Subsection 3.3.3, we can retrieve the citation count for the publications in
our system.

This shrinks the dataset to n = 962 publications, as the Scopus API does not
contain all the publications in our system. While this is a significant reduction
in the dataset size, we still consider this representative and large enough for the
purposes of this thesis.

3.5.2 Training the models
As in the previous section, we train two models for predicting the citation count
of the publications based on the local graph measures.

Linear regression: The first model is a simple linear regression model, which
tries to predict the citation count of the publications based on the local graph
measures. The model is trained on the training dataset (n = 768) and evaluated
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on the test dataset (n = 194). On the test dataset, the model achieves a MSE of
6725.05077.

As in the previous experiment, the model allows us to inspect the coefficients of
the individual features and interpret their importance for the prediction of the
citation count.

Feature Coefficient
centrality_1 13.60649
centrality_2 -12.04390
degree 35.42298
katz_centrality -5.46456
node_cut 3.06015

Figure 3.12: Coefficients of the linear regression model for predicting the
publication citation count.

Note that from the linear regression coefficients, it seems that the degree of the
publication is the most important feature for the prediction of the citation count
(all the features are normalized to the same scale before training the regression).
This is in line with the findings of Abbasi et al. [2011], which - while inspecting
slightly different graph measures - also found the degree of the publications to
be the most important feature for the prediction of the citation count.

Neural network: The second model is a neural network model, which tries to
predict the citation count of the publications based on the local graph measures.
Training a neural network (2 hidden layers, 100 neurons each) on the training
dataset (n = 768) gives us a MSE of 7425.57273 on the test data (n = 194).

Note that in terms of the MSE, neither of the models is performing especially well
- in the absolute numbers of root mean squared error (RMSE), the models are off
by approximately 80 citations on average. This is a significant error, considering
that the average citation count in the dataset is 30.

3.5.3 Citation-based ranking[blog]

Note that despite the unfavorable results of the previous experiments - i.e., pre-
dicting the absolute value of the citation count - we might still be able to use the
citation count as a proxy for the global relevance of the publications.

This is beause the ranking benchmarks (and human users of search engines) are
usually not be interested in the exact citation count, but rather in the relative
importance of the publications. Both benchmarks and users also tend to discount
the publications further down in the search result list.

Because of our original goal, i.e. reorder the search results to set the more “glob-
ally” important papers higher, we might try to use the predicted citation count
as the relevance score for the search results ranking.

In the last experiment, we calculate the nDCG score of the search results in
Charles Explorer with the true citation count as the relevance feedback and the
predicted citation count based on the graph metrics as the ordering.
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Figure 3.13: nDCG scores of 100 queries with different citation count
prediction methods.

We see that both the methods utilizing the graph measures for the citation count
prediction are performing much better than the baseline benchmark. This con-
firms our hypothesis from the beginning of this subsection - while the graph mea-
sures might not provide enough data for the absolute prediction of the citation
count, they can still be utilized to rank the publications.
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4. Visualising networks on the
Web
Even though the data mining processes described in the previous chapters give
us valuable insights into the structure of social networks, they are not necessarily
easy to interpret for laymen. One way to make the results of data mining more
accessible is to create data visualization, that is present the data with their visual
representation, while using different visual cues to guide the viewers’ attention
towards different qualities.

In this part of the thesis, we will assess the current state of the visualizations in
the Charles Explorer application, will propose some improvements to make the
visualization more accessible to the users and will implement those.

At the moment of publishing this thesis, the person search mode in the Charles
Explorer application1 already contains the experimental prototype of the changes
proposed in this chapter. For consistency, we will still consider the “current state”
of the visualization the one without the proposed changes.

The implementation of the visualization components is available in the GitLab
repository2.

Visual decoding Also called preattentive processing or preattentive vision,
visual decoding is the instantaneous perception of the visual field that comes
without apparent mental effort. (Cleveland and Mcgill [1985])

4.1 Assessing the current state
The current state of the Charles Explorer visualization views is quite simple.

In the Person search mode, the user can search for people inside Charles Univer-
sity. When accessing a person’s profile, the application shows the person’s ego
network with the main person and their direct collaborators as nodes and their
common publications aggregated to the edges.

The graph is displayed with a force-directed layout. The edge thickness is pro-
portional to the number of common publications between the two people and the
colors of the nodes represent the person’s faculty association.

This approach has multiple drawbacks which we will now discuss.

4.1.1 Problems with color coding
Firstly, the color coding of the nodes does not prove useful, as it hinders the
visual decoding of the graph. The user spends attention on reading the legend
rather than interpreting the graph subconsciously.

1Available, e.g., at https://explorer.cuni.cz/person/1732969562160398
2At https://gitlab.mff.cuni.cz/barj/charles-explorer/
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Figure 4.1: Charles Explorer showing the ego network of a person.

This is especially true for larger ego networks with many nodes with different
faculty affiliations. Additionaly, the application does not provide any alternative
visual cue for color vision deficient users.

Figure 4.2: Graph view for query ‘dentistry’ shows nodes with various
faculty affiliations.

According to Cleveland and Mcgill [1985], the upper bound on color discrimina-
tion in one figure is 5–6 colors for a healthy viewer. This is not enough for the
17 faculties and departments of Charles University. With faculties, there is also
little room for a meaningful aggregation (of more faculties into one color), as the
faculty structure is not hierarchical.

4.1.2 Layouting problems
The arbitrary positions of the nodes based on the physical simulation layout
increase the cognitive load of the viewer and contribute to the graph’s worse
readability.

Munzner [2015] states that the position of data points on a common scale is the
most effective way to communicate the data to the viewer. By using the physical
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simulation layout, we are willingly giving up this visual channel (the x and y
position of the nodes in the screen space).

In case the user is looking for a specific person in the graph, they have to scan the
whole graph to find the person, as the node position does not code any inherent
information about the person.

4.1.3 Contracting publication nodes into edges
The current data visualization effectively presents a monopartite projection of the
social network - uses authors as the nodes and contracts publications as the edges.
The number of common publications is aggregated to the edge thickness. Few
[2012] considers thickness a visual channel with a limited quantitative resolution.

Setting the edge width in proportion to the number of common publications might
also cause confusion, as the area of the edge depends both on the width and the
length of the edge. Longer edges might appear more important than the shorter
ones, even though they might denote the same number of common publications.

This is undesirable, as it goes against the underlying idea of the physical sim-
ulation layout, which places the nodes closer to each other if they are more
connected.

Furthermore, the contraction of the publication nodes into edges poses another
problem. A publication with n authors contributes to n(n−1)

2 edges between its
authors.

Figure 4.3: The monopartite projection correctly shows only coauthorship
between pairs of authors. Larger communities of coauthors (# coauthors
> 2) are not displayed correctly in the graph.

This means that publications with one author are not represented in the graph
at all, as there are no edges to draw between the nodes.

For publications with more than two authors, one publication is represented by
multiple edges between all the pairs of the authors. This clutters the graph
with edges and makes the publication-edge mapping less readable. For correct
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representation of those publications, we would need to draw hyperedges between
the nodes, which might cause the readability of the graph to decrease even further.

4.2 Addressing the issues
To address the problems from the section 4.1 and improve the visualization of the
ego networks, we propose changes to the current visualization. We also implement
an experimental prototype visualization of the proposed changes.

4.2.1 Ego-network visualization
To start, we can address the problem of the publication-edge contraction by dis-
playing the publications as nodes in the graph.

This way, both the entity types (authors and publications) are displayed as nodes
in the visualization. This is perhaps easier to understand for a layman, as both
authors and publications are real-life entities. The edges between the nodes now
represent an incidence relation between the two entities.

The resulting graph is a bipartite graph, with two types of nodes - authors and
publications, and edges connecting the authors to the publications they have
co-authored.

To support the visual decoding of the graph, we distinguish the two types of
nodes by their shape. This way, the user can easily distinguish between the
authors and the publications, even if they are color-vision deficient or are viewing
the visualization reproduced using a monochrome display medium (for example
a print from a black-and-white printer).

The main node (the ego) is highlighted with color fill - since it is the only node of
this type in the graph, it is easy to distinguish from the other nodes - even with
monochrome display mediums or color vision impairments.

Figure 4.4: In the proposed visualization, the publications are displayed
as nodes in the graph. Larger-than-binary coauthorships are now repre-
sented correctly.
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This approach also removes the need for the edge-width encoding of the number
of common publications.

To avoid the color coding problems from 4.1.1, we defer the faculty affiliation
information to the node tooltip. This is only visible after the user hovers over
the node with the mouse cursor, so it does not clutter the graph view.

4.2.2 Node locality and layouting
As mentioned in 4.1.2, the arbitrary positions of the nodes in the force-directed
layout increase the cognitive load of the viewer. For larger graphs, the viewer
might not be able to find the node they are looking for, as the node position does
not code any inherent information about the person.

To address this, we propose a search tool that highlights the search results in the
graph.

Figure 4.5: The first picture shows a large ego network with many nodes.
The second picture shows the same network with entities highlighted
by the search tool (search for video shows related publications and co-
authors).

To further improve the graph readability and the usability of the tool, we pro-
pose a query suggester. This is a user interface element consisting of multiple
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buttons with predefined queries, which the user can click to search for the query
in the graph. The suggested queries are based on tf-idf analysis of the text data
connected to the ego network (publication titles and abstracts).

The tokens (unigrams and bigrams) with the highest tf-idf score are selected as
the suggested queries.

4.2.3 Faculty affiliation
While we have already addressed the color coding issues from 4.1.1 by introducing
the on-hover tooltip, this has removed some of the information from the graph
view.

In the original visualization, the faculty affiliation for people was displayed as the
node color. This has helped the user to quickly identify the faculty affiliation of
the ego’s collaborators, but also to see the distribution of the faculty affiliations
in the ego network, and identify interesting collaboration patterns. This is no
longer possible with the new tooltip-based approach.

To address this, we propose a new visualization of the faculty affiliation data.
Each co-author of the ego has a faculty affiliation assigned to them, along with
the number of common publications with the ego.

For visualizing the distribution of faculty affiliations in the ego network, we can
use a pie chart.

Figure 4.6: The pie chart view shows the distribution of faculty affilia-
tions in the ego network, as well as the most frequent collaborators of the
ego.

This visualization is still suffering from some of the problems of the original one.

A publication with n authors still contributes to (n − 1) pie chart arcs. This
causes the solo publications to not be represented in the pie chart at all, and the
publications with more than two authors to be overrepresented.

The color coding of the pie chart arcs (denoting the faculty affiliation) is also not
ideal since it still poses a problem for color-vision deficient users.
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To address these issues, we add a few more features to the pie chart view.

Firstly, we reuse the tooltip user interface element from the graph view. When
the user hovers over the pie chart arc, they can see the faculty affiliation name
and the number of co-authored publications.

This helps both the color vision deficient users with identifying the faculty affili-
ation, and the general users with understanding the scale of the collaboration.

Secondly, we add an on-click boolean AND filter. When the user clicks on the
pie chart arc, the view filters the underlying data to only represent co-authors of
both the ego and the clicked-on co-author.

Figure 4.7: Right-clicking on the pie chart arc shows the intersection of
the ego’s and the clicked-on person’s collaborators.

The AND filter can be used repeatedly, adding new “pinned” collaborators one at
a time. Focusing on a smaller subset of the ego network can help to mitigate
the problems with the overrepresentation of the publications with more than two
authors helping the user to understand the smaller-scale collaboration patterns
better.

The filter also applies to the left side of the view, where the user can see the
actual publications of the selected co-authors. This further clears up the multiple
co-authorship problem.
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Conclusion
The goal of this thesis was to improve the Charles Explorer web application -
both in terms of user experience and the search engine - using the synthesized
academic social network from the existing relational data.

We have devised a highly performant pipeline for transforming the relational data
into a graph representation of the academic social network. After the transforma-
tion, we explored the network and proposed various ways of utilizing the network
metrics for inferring missing data.

Surprisingly, the baseline naïve methods dominated the network-based methods
in the task of inferring missing data. This is likely due to the specific distribution
of person names in our testing dataset. The improved (context-aware) naïve
approach, showed even more promising results and is now a part of the Charles
Explorer application.

With the synthesized social network in place, we expressed concerns about the
quality of full-text search-based ranking, and we explored the possibility of using
the network for re-ranking the search results in the Charles Explorer application.

Deeper comparison with search results of the Elsevier Scopus academic search
engine revealed that professional search engines seemingly use only full-text search
based ranking too.

By retrieving citation counts from the Scopus database, we were able to bench-
mark different re-ranking strategies using the social network metrics against an
objective measure of academic impact.

While these experiments yielded promising results - as the search result reranking
based on the social network metrics did outperform the full-text search based
ranking - the computational performance of the re-ranking strategies did not
satisfy the requirements for the usage in the production environment.

Lastly, we have assessed the user experience of the Charles Explorer application
and identified the problematic parts of the existing visualization tool for the
academic social network.

We reimplemented the tool for visualizing the academic social network in the
Charles Explorer application. The tool now better adheres to the visualization
principles of graph data, it is more user-friendly and performant. By simplifying
certain parts of the visualization, we improve the interpretability of the visualized
data.

This visualization tool became a part of the Charles Explorer application and is
now available to users.

59

https://explorer.cuni.cz/


Bibliography
Alireza Abbasi, Jörn Altmann, and Liaquat Hossain. Identifying the effects

of co-authorship networks on the performance of scholars: A correlation
and regression analysis of performance measures and social network analy-
sis measures. Journal of Informetrics, 5(4):594–607, 2011. ISSN 1751-1577.
doi: https://doi.org/10.1016/j.joi.2011.05.007. URL https://www.sciencedirect.
com/science/article/pii/S1751157711000630.

Joeran Beel, Bela Gipp, and Erik Wilde. Academic search engine optimization
(aseo). Journal of Scholarly Publishing, 41:176–190, 01 2010. doi: 10.3138/jsp.
41.2.176.

Michael Bendersky and Oren Kurland. Re-ranking search results using document-
passage graphs. pages 853–854, 07 2008. doi: 10.1145/1390334.1390539.

Chris Bennett, Jody Ryall, Leo Spalteholz, and Amy Gooch. The aesthetics of
graph visualization. In CAe, pages 57–64, 2007.

Ulrik Brandes. A faster algorithm for betweenness centrality. The Journal of
Mathematical Sociology, 25, 03 2004. doi: 10.1080/0022250X.2001.9990249.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. volume 30, 11 1998. doi: 10.1016/j.comnet.2012.10.007.

Christoph Böhm, Eyk Kny, Benjamin Emde, Ziawasch Abedjan, and Felix Nau-
mann. Sprint: ranking search results by paths. pages 546–549, 03 2011. doi:
10.1145/1951365.1951437.

Oguz Cimenler, Kingsley A. Reeves, and John Skvoretz. A regression analy-
sis of researchers’ social network metrics on their citation performance in a
college of engineering. Journal of Informetrics, 8(3):667–682, 2014. ISSN
1751-1577. doi: https://doi.org/10.1016/j.joi.2014.06.004. URL https://www.
sciencedirect.com/science/article/pii/S1751157714000571.

William Cleveland and Ron Mcgill. Graphical perception and graphical methods
for analyzing scientific data. Science (New York, N.Y.), 229:828–33, 09 1985.
doi: 10.1126/science.229.4716.828.

Martin Everett and Stephen Borgatti. Ego network betweenness. Social Networks,
27:31–38, 01 2005. doi: 10.1016/j.socnet.2004.11.007.

Stephen Few. Show Me the Numbers: Designing Tables and Graphs to Enlighten.
Analytics Press, Oakland, CA, USA, 2nd edition, 2012. ISBN 0970601972.

Max Franz, Christian T Lopes, Gerardo Huck, Yue Dong, Onur Sumer, and
Gary D Bader. Cytoscape.js: a graph theory library for visualisation and
analysis. Bioinformatics, 32(2):309–311, 2016.

60

https://www.sciencedirect.com/science/article/pii/S1751157711000630
https://www.sciencedirect.com/science/article/pii/S1751157711000630
https://www.sciencedirect.com/science/article/pii/S1751157714000571
https://www.sciencedirect.com/science/article/pii/S1751157714000571


Mark Glick, Greg Richards, Margarita Sapozhnikov, and Paul Seabright. How
does ranking affect user choice in online search? Review of Industrial Organiza-
tion, 45(2):99–119, Sep 2014. ISSN 1573-7160. doi: 10.1007/s11151-014-9435-y.
URL https://doi.org/10.1007/s11151-014-9435-y.

Sacha Greif and Eric Burel. State of javascript 2023, other tools - graphics
and animation, 2024. URL https://2023.stateofjs.com/en-US/other-tools/#graphics_
animation.

Brynjar Gretarsson, Svetlin Bostandjiev, John O’Donovan, and Tobias Höllerer.
Wigis: A framework for scalable web-based interactive graph visualizations. In
Graph Drawing: 17th International Symposium, GD 2009, Chicago, IL, USA,
September 22-25, 2009. Revised Papers 17, pages 119–134. Springer, 2010.

Michael Gusenbauer. Google scholar to overshadow them all? comparing the sizes
of 12 academic search engines and bibliographic databases. Scientometrics, 118:
177–214, 01 2019. doi: 10.1007/s11192-018-2958-5.

Hatem Haddad and Amna Dridi. Social relevance for re-ranking documents of
search engines results. 06 2013.

Lamjed Jabeur, Lynda Tamine, and Mohand Boughanem. A social model for
literature access: Towards a weighted social network of authors. 01 2010.

Leo Katz. A new status index derived from sociometric analysis. Psychometrika,
18(1):39–43, Mar 1953. ISSN 1860-0980. doi: 10.1007/BF02289026. URL
https://doi.org/10.1007/BF02289026.

Vít Macháček and Martin Srholec. Predatory publishing in Scopus: Evidence on
cross-country differences. Quantitative Science Studies, 3(3):859–887, 11 2022.
ISSN 2641-3337. doi: 10.1162/qss_a_00213. URL https://doi.org/10.1162/qss_
a_00213.

Alireza Mansouri, Lilly Suriani Affendey, and Ali Mamat. Named entity recog-
nition approaches. International Journal of Computer Science and Network
Security, 8(2):339–344, 2008.

T. Munzner. Visualization Analysis and Design. AK Peters Visualization Series.
CRC Press, 2015. ISBN 9781498759717. URL https://books.google.de/books?id=
NfkYCwAAQBAJ.

Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. k-hop graph
neural networks, 2019.

Alexander J. Ordoobadi, Numa Perez, Maggie Westfal, David C. Chang, and
Cassandra Kelleher. Social network analysis of authors in scientific journals.
Journal of the American College of Surgeons, 229(4, Supplement 1):S164, 2019.
ISSN 1072-7515. doi: https://doi.org/10.1016/j.jamcollsurg.2019.08.362. URL
https://www.sciencedirect.com/science/article/pii/S107275151930818X. Scientific Forum
Abstracts: 2019 Clinical Congress.

61

https://doi.org/10.1007/s11151-014-9435-y
https://2023.stateofjs.com/en-US/other-tools/#graphics_animation
https://2023.stateofjs.com/en-US/other-tools/#graphics_animation
https://doi.org/10.1007/BF02289026
https://doi.org/10.1162/qss_a_00213
https://doi.org/10.1162/qss_a_00213
https://books.google.de/books?id=NfkYCwAAQBAJ
https://books.google.de/books?id=NfkYCwAAQBAJ
https://www.sciencedirect.com/science/article/pii/S107275151930818X


Enrique Orduna-Malea, Juan Ayllón, Alberto Martín-Martín, and Emilio Delgado
López-Cózar. Methods for estimating the size of google scholar. Scientometrics,
104, 06 2015. doi: 10.1007/s11192-015-1614-6.

Changhua Pei, Wenwu Ou, Dan Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao
Lin, Hanxiao Sun, Jian Wu, Peng Jiang, and Junfeng Ge. Personalized re-
ranking for recommendation. pages 3–11, 09 2019. ISBN 978-1-4503-6243-6.
doi: 10.1145/3298689.3347000.

Robert Sokal and F. Rohlf. The comparison of dendrograms by objective methods.
taxon 11: 33-40. Taxon, 11:33–40, 02 1962. doi: 10.2307/1217208.

Zhan Su, Zuyi Lin, Jun Ai, and Hui Li. Rating prediction in recommender
systems based on user behavior probability and complex network modeling.
IEEE Access, 9:30739–30749, 2021. doi: 10.1109/ACCESS.2021.3060016.

Jonathan Tennant. Web of science and scopus are not global databases of knowl-
edge. European Science Editing, 46, 10 2020. doi: 10.3897/ese.2020.e51987.

Christian Tominski, James Abello, and Heidrun Schumann. Cgv—an interactive
graph visualization system. Computers & Graphics, 33(6):660–678, 2009.

Manjula Wijewickrema. Reality or illusion: Comparing google scholar and scopus
data for predatory journals. portal: Libraries and the Academy, 24:35–58, 01
2024. doi: 10.1353/pla.2024.a916989.

62



List of Abbreviations
ACM Association for Computing Machinery

ASEO academic search engine optimization

CUNI Charles University

DCG discounted cumulative gain

DOI Digital Object Identifier

GNN graph neural network

ISBN International Standard Book Number

MRR mean reciprocal rank

MSE mean squared error

NFD Normalization Form D

NLP natural language processing

OBD Osobní bibliografická databáze (Personal Bibliographic Database)

RMSE root mean squared error

SIGIR Special Interest Group on Information Retrieval

UKČO Číslo osoby (Person ID in the CU information system)

ÚVT Ústav výpočetní techniky (Computer Science Centre)
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